Assessment of Dysregulation of HERC6 and Essential Biological Processes in Response to Laser Therapy of Human Arm Skin
Journal of Lasers in Medical Sciences,
Vol. 11 No. 2 (2020),
15 March 2020
,
Page 115-119
Abstract
Introduction: The widespread application of lasers in medicine, especially in the treatment of diseases implies more investigations to understand the precious molecular mechanism of the laser effect on the human body. In the present study, the prominent role of HERC6 in response to CO2 Laser therapy of human skin is investigated.
Methods: The numbers of 16 gene expression profiles before and after the treatment with the CO2 laser are downloaded from Gene Expression Omnibus (GEO), and differentially-expressed genes (DEGs) are analyzed to find the significant DEGs. Gene ontology analysis revealed that HERC6 and a set of its neighbors played a significant role in response to laser application.
Results: The expression changes of 52 significant DEGs were compared via heat map analysis and 27 significant DEGs were introduced as the critical genes which are involved in response to laser irradiation. “Thymidylate kinase activity” among 9 clusters of biological terms was highlighted as an important biological process related to the identified DEGs. HERC2 was proposed as a critical DEG which was related to several essential cellular processes in response to laser application.
Conclusion: The findings from the present study indicate that HERC6 and the numbers of its first neighbors are involved in the essential cellular response to laser therapy of human skin.
- Laser therapy
- Skin
- HERC6
- Gene Expression
- Gene ontology.
How to Cite
References
Raulin C, Karsai S. Laser and IPL technology in dermatology and aesthetic medicine. Berlin, Heidelberg: Springer; 2011. doi: 10.1007/978-3-642-03438-1.
Zivin JA, Albers GW, Bornstein N, Chippendale T, Dahlof B, Devlin T, et al. Effectiveness and safety of transcranial laser therapy for acute ischemic stroke. Stroke. 2009;40(4):1359-64. doi: 10.1161/STROKEAHA.109.547547.
Karu T. Molecular mechanism of the therapeutic effect of low-intensity laser radiation. Lasers Life Sci. 1988;2(1):53-74.
Smith KC. The photobiological basis of low level laser radiation therapy. Laser Ther. 1991;3(1):19-24.
Ogita M, Tsuchida S, Aoki A, Satoh M, Kado S, Sawabe M, et al. Increased cell proliferation and differential protein expression induced by low-level Er: YAG laser irradiation in human gingival fibroblasts: proteomic analysis. Lasers Med Sci. 2015;30(7):1855-66. doi: 10.1007/s10103-014-1691-4.
Monici M, Cialdai F, Ranaldi F, Paoli P, Boscaro F, Moneti G, et al. Effect of IR laser on myoblasts: a proteomic study. Mol Biosyst. 2013;9(6):1147-61. doi: 10.1039/c2mb25398d.
Rezaei-Tavirani M, Tavirani MR, Zamanian Azodi M, Moravvej Farshi H, Razzaghi M. Evaluation of skin response after erbium: yttrium–aluminum–garnet laser irradiation: a network analysis approach. J Lasers Med Sci. 2019;10(3):194-9. doi: 10.15171/jlms.2019.31.
Razzaghi M, Rostami-Nejad M, Rezaei-Tavirani M, Zamanian Azodi M, Okhovatian F, Mansouri V, et al. Muscle Recovery Is Highlighted by IR Laser Therapy. J Lasers Med Sci. 2019;10(Suppl 1):S49-S53. doi: 10.15171/jlms.2019.S9.
Mansouri V, Rezaei-Tavirani M, Zadeh-Esmaeel MM, Rezaei-Tavirani S, Razzaghi M, Okhovatian F, et al. Analysis of laser therapy effects on squamous cell carcinoma patients: A system biology study. J Lasers Med Sci. 2019;10(Suppl1):S1-S6. doi: 10.15171/jlms.2019.S1.
Gole B, Potočnik U. Pre-treatment biomarkers of anti-tumour necrosis factor therapy response in Crohn’s disease—A systematic review and gene ontology analysis. Cells. 2019;8(6):515. doi: 10.3390/cells8060515.
Rezaei-Tavirani S, Rostami-Nejad M, Vafaee R, Khalkhal E, Keramatinia A, Ehsani-Ardakani MJ, et al. Introducing tumor necrosis factor as a prominent player in celiac disease and type 1 diabetes mellitus. Gastroenterol Hepatol Bed Bench. 2019;12(Suppl1):S123-S129. doi: 10.22037/ghfbb.v12i0.1833.
Rostami-Nejad M, Rezaei-Tavirani M, Zadeh-Esmaeel MM, RezaeiTavirani S, Akbari Z, Esmaeili S, et al. Assessment of cytokine-mediated signaling pathway dysregulation in arm skin after CO2 laser therapy. J Lasers Med Sci. 2019;10(4):257-63. doi: 10.15171/jlms.2019.42.
Kim D, Chen R, Sheu M, Kim N, Kim S, Islam N, et al. Noncoding dsRNA induces retinoic acid synthesis to stimulate hair follicle regeneration via TLR3. Nat commun. 2019;10(1):2811. doi: 10.1038/s41467-019-10811-y.
Babicki S, Arndt D, Marcu A, Liang Y, Grant JR, Maciejewski A, et al. Heatmapper: web-enabled heat mapping for all. Nucleic Acids Res. 2016;44(W1):W147-W53. doi: 10.1093/nar/gkw419.
Luke AM, Mathew S, Altawash MM, Madan BM. Lasers: A review with their applications in oral medicine. J Lasers Med Sci. 2019;10(4):234-329. doi: 10.15171/jlms.2019.52.
Khalkhal E, Rezaei-Tavirani M, Zali MR, Akbari Z. The evaluation of laser application in surgery: A review article. J Lasers Med Sci. 2019;10(Suppl 1):S104-S111. doi:10.15171/jlms.2019.S18.
Passeron T, Genedy R, Salah L, Fusade T, Kositratna G, Laubach HJ, et al. Laser treatment of hyperpigmented lesions: position statement of the European Society of Laser in Dermatology. J Eur Acad Dermatol Venereol. 2019;33(6):987-1005. doi: 10.1111/jdv.15497.
Panchaprateep R, Pisitkun T, Kalpongnukul N. Quantitative proteomic analysis of dermal papilla from male androgenetic alopecia comparing before and after treatment with low‐level laser therapy. Lasers Surg Med. 2019;51(7):600-608. doi: 10.1002/lsm.23074.
Costa TODA, Manchini MT, Serra AJ, Atum AB, Feliciano RS, Silva Jr JA. Effects of photobiomodulation in mRNA expression of extracellular matrix components of cardiac fibrosis in experimental post-infarcted myocardial in rats. FASEB J. 2019;33(1_supplement):lb278-lb.
Avila R, Tamariz E, Medina-Villalobos N, Andilla J, Marsal M, Loza-Alvarez P, editors. Cell membrane molecular dynamics under a NIR focused laser. Proc. SPIE 10876, Optical Interactions with Tissue and Cells XXX. 2019; San Francisco, United States. doi: 10.1117/12.2507904
Ketscher L, Basters A, Prinz M, Knobeloch KP. mHERC6 is the essential ISG15 E3 ligase in the murine system. Biochem Biophys Res commun. 2012;417(1):135-40. doi: 10.1016/j.bbrc.2011.11.071.
Oudshoorn D, van Boheemen S, Sanchez-Aparicio MT, Rajsbaum R, García-Sastre A, Versteeg GA. HERC6 is the main E3 ligase for global ISG15 conjugation in mouse cells. PLoS One. 2012;7(1):e29870. doi: 10.1371/journal.pone.0029870.
Garcia-Gonzalo F, Rosa J. The HERC proteins: functional and evolutionary insights. Cell Mol Life Sci. 2005;62(16):1826-38. doi: 10.1007/s00018-005-5119-y.
Geisler S, Vollmer S, Golombek S, Kahle PJ. The ubiquitin-conjugating enzymes UBE2N, UBE2L3 and UBE2D2/3 are essential for Parkin-dependent mitophagy. J Cell Sci. 2014;127(Pt 15):3280-93. doi: 10.1242/jcs.146035.
- Abstract Viewed: 549 times
- PDF Downloaded: 750 times