The Effect of Low-Power Laser Therapy on the TGF/β Signaling Pathway in Chronic Kidney Disease: A Review
Journal of Lasers in Medical Sciences,
Vol. 11 No. 2 (2020),
15 March 2020
,
Page 220-225
Abstract
Objective: The purpose of this study is to investigate the effects of low-power lasers on kidney disease by investigating several studies.
Methods: A number of articles from 1998 to 2019 were chosen from the sources of PubMed, Scopus, and only the articles studying the effect of low-power lasers on kidney disease were investigated.
Results: After reviewing the literature, 21 articles examining only the effects of low-power lasers on kidney disease were found. The results of these studies showed that the parameter of the low-power laser would result in different outcomes. So, a low-power laser with various parameters can be effective in the treatment of kidney diseases such as acute kidney disease, diabetes, glomerulonephritis, nephrectomy, metabolic syndrome, and kidney fibrosis. Most studies have shown that low-power lasers can affect TGFβ1 signaling which is the most important signaling in the treatment of renal fibrosis.
Conclusion: Lasers can be effective in reducing or enhancing inflammatory responses, reducing fibrosis factors, and decreasing reactive oxygen species (ROS) levels in kidney disease and glomerular cell proliferation.
- Low-power laser therapy
- Chronic kidney disease
- TGFβ1 signaling
How to Cite
References
López-Hernández FJ, López-Novoa JM. Role of TGF-β in chronic kidney disease: an integration of tubular, glomerular and vascular effects. Cell Tissue Res. 2012;347(1):141-54. doi: 10.1007/s00441-011-1275-6.
Harris RC, Neilson EG. Toward a unified theory of renal progression. Annu Rev Med. 2006;57:365-80. doi: 10.1146/ annurev.med.57.121304.131342.
Mutsaers HA, Olinga P. Editorial: Organ fibrosis: triggers, pathways, and cellular plasticity. Front Med (Lausanne).
;3:55. doi: 10.3389/fmed.2016.00055.
Couser WG, Remuzzi G, Mendis S, Tonelli M. The contribution of chronic kidney disease to the global burden of major noncommunicable diseases. Kidney Int. 2011;80(12):1258-70. doi: 10.1038/ki.2011.368.
Jha V, Garcia-Garcia G, Iseki K, Li Z, Naicker S, Plattner B, et al. Chronic kidney disease: global dimension and perspectives. Lancet. 2013;382(9888):260-72. doi: 10.1016/ S0140-6736(13)60687-X.
Wynn TA. Cellular and molecular mechanisms of fibrosis. J Pathol. 2008;214(2):199-210. doi: 10.1002/path.2277.
Hewitson TD. Renal tubulointerstitial fibrosis: common but never simple. Am J Physiol Ren Physiol. 2009;296(6): F1239-F1244. doi: 10.1152/ajprenal.90521.2008.
Dungey M, Hull KL, Smith AC, Burton JO, Bishop NC. Inflammatory factors and exercise in chronic
kidney disease. Int J Endocrinol. 2013;2013:569831. doi: 10.1155/2013/569831.
Rockey DC, Bell PD, Hill JA. Fibrosis—a common pathway to organ injury and failure. N Engl J Med. 2015.372(12):1138-1149. doi: 10.1056/NEJMra1300575.
Duffield JS. Cellular and molecular mechanisms in kidney fibrosis. J Clin Invest. 2014;124(6): 2299-2306. doi:10.1172/
JCI72267.
Herrera J, Henke CA, Bitterman PB. Extracellular matrix as a driver of progressive fibrosis. J Clin Invest. 2018;128(1): 45-53. doi: 10.1172/JCI93557.
Bechtel W, McGoohan S, Zeisberg EM, Müller GA, Kalbacher H, Salant DJ, et al. Methylation determines fibroblast activation and fibrogenesis in the kidney. Nat Med. 2010;16(5):544-50. doi: 10.1038/nm.2135.
Koyama Y, Xu J, Liu X, Brenner DA. New developments on the treatment of liver fibrosis. Dig Dis. 2016;34(5):589-96.
doi: 10.1159/000445269.
Koushki M, Amiri‐Dashatan N, Ahmadi N, Abbaszadeh HA, Rezaei‐Tavirani M. Resveratrol: A miraculous natural compound for diseases treatment. Food Sci Nutr. 2018;6(8):2473-90. doi: 10.1002/fsn3.855.
Choi ME, Ding Y, Kim SI. TGF-β signaling via TAK1 pathway: role in kidney fibrosis. Semin Nephrol. 2012;32(3):244-52. doi: 10.1016/j.semnephrol.2012.04.003. 16. Ma FY, Sachchithananthan M, Flanc RS, Nikolic-Paterson DJ. Mitogen-activated protein kinases in renal fibrosis. Front Biosci (Schol Ed). 2009;1:171-87. doi: 10.2741/s17.
Darabi S, Tiraihi T, Noori-Zadeh A, Rajaei F, Darabi L, Abbaszadeh H. Creatine and retinoic acid effects on the induction of autophagy and differentiation of adipose tissue-derived stem cells into GABAergic-like neurons. Journal of Babol University of Medical Sciences. 2017;19(8):41-9. doi: 10.22088/jbums.19.8.41.
Abbaszadeh HA, Tiraihi T, Delshad A, Saghedizadeh M, Taheri T, Kazemi H, et al. Differentiation of neurospherederived
rat neural stem cells into oligodendrocyte-like cells by repressing PDGF-α and Olig2 with triiodothyronine. Tissue Cell. 2014;46(6):462-9. doi: 10.1016/j. tice.2014.08.003.
O’Connor M, Patil R, Yu J, Hickey R, Premanand K, Kajdacsy-Balla A, et al. Mesenchymal stem cells synergize with 635, 532, and 405 nm laser wavelengths in renal fibrosis: a pilot study. Photomed Laser Surg. 2016;34(11):556-563.
doi:10.1089/pho.2015.4025.
Oliveira FA, Moraes AC, Paiva AP, Schinzel V, Correa- Costa M, Semedo P, et al. Low-level laser therapy decreases renal interstitial fibrosis. Photomed Laser Surg. 2012; 30(12): 705-13. doi:10.1089/pho.2012.3272.
Maritim AC, Sanders RA, Watkins JB 3rd. Diabetes,
oxidative stress, and antioxidants: a review. J Biochem Mol Toxicol. 2003;17(1): 24-38. doi: 10.1002/jbt.10058. 22. Asghari A, Takhtfooladi MA, Hoseinzadeh HA. Effect of photobiomodulation on ischemia/reperfusioninduced renal damage in diabetic rats. Lasers Med Sci. 2016;31(9):1943-1948. doi: 10.1007/s10103-016-2073-x.
Lim J, Sanders RA, Snyder AC, Eells JT, Henshel DS, Watkins JB 3rd. Effects of low-level light therapy on the streptozotocin-induced diabetic kidney. J Photochem Photobiol B. 2010;99(2):105-110. doi: 10.1016/j. jphotobiol.2010.03.002.
Ucero AC, Sabban B, Benito-Martin A, Carrasco S, Joeken S, Ortiz A. Laser therapy in metabolic syndrome‐related kidney injury. Photochem Photobiol. 2013;89(4):953-960. doi: 10.1111/php.12055.
Lim J, Sanders RA, Yeager RL, Millsap DS, Watkins JB 3rd, Eells JT, et al. Attenuation of TCDD‐induced oxidative stress by 670 nm photobiomodulation in the developmental chicken kidney. J Biochem Mol Toxicol. 2008;22(4):230-9. doi: 10.1002/jbt.20233.
Wada Y, Iyoda M, Matsumoto K, Shindo-Hirai Y, Kuno Y, Yamamoto Y, et al. Epidermal growth factor receptor
inhibition with erlotinib partially prevents cisplatin-induced nephrotoxicity in rats. PLoS One. 2014;9(11):e111728. doi:
1371/journal.pone.0111728.
- Abstract Viewed: 1002 times
- PDF Downloaded: 362 times