In Vitro Application of Sonodynamic Antimicrobial Chemotherapy as a Sonobactericidal Therapeutic Approach for Bacterial Infections: A Systematic Review and Meta-analysis Sonodynamic Antimicrobial Chemotherapy Against Microbial Infections
Journal of Lasers in Medical Sciences,
Vol. 11 No. Supplement (2020),
30 Dey 2020
,
Page S1-S7
Abstract
Introduction: This study aimed to perform a systematic review of the literature followed by a meta-analysis about the efficacy of sonodynamic antimicrobial chemotherapy (SACT) in bacterial infections.
Methods: According to the PICOS (population, intervention, comparison, and outcome) recommendations and PRISMA guidelines, an electronic search was conducted in PubMed, SCOPUS, Embase, and Cochrane Library based on the MeSH terms. All analyses were conducted using Biostat’s Comprehensive Meta-Analysis version 2.0. The inter-study heterogeneity and publication bias assessments were carried out on the studies using I2
and Egger’s regression test.
Results: Initially, 126 articles were identified in the electronic search, and 14 studies remained after analysis and exclusion of the duplicated studies and eligibility criteria. All results from the included studies displayed a significant reduction of microorganisms. The meta-analysis demonstrated a significant reduction in the bacterial load in all analyses (0.944% [95% CI, 0.901-0.969%; P=0.000]). Also, there was a low risk of bias for microbial load reduction without the evidence of publication bias.
Conclusion: The results highlight that there is scientific evidence emphasizing the effectiveness of SACT in reducing the count of microorganisms in bacterial infections.
- Systematic review; Meta-analysis; Sonodynamic antimicrobial chemotherapy; Microbial infections
How to Cite
References
References
Serpe L, Giuntini F. Sonodynamic antimicrobial chemotherapy: First steps towards a sound approach for microbe inactivation. J Photochem Photobiol B. 2015;150:44-49. doi: 10.1016/j.jphotobiol.2015.05.012.
McHale AP, Callan JF, Nomikou N, Fowley C, Callan B. Sonodynamic therapy: Concept, mechanism and application to cancer treatment. Adv Exp Med Biol. 2016;880:429-450. doi: 10.1007/978-3-319-22536-4_22.
Rengeng L, Qianyu Z, Yuehong L, Zhongzhong P, Libo L. Sonodynamic therapy, a treatment developing from photodynamic therapy. Photodiagnosis Photodyn Ther. 2017;19:159-166. doi: 10.1016/j.pdpdt.2017.06.003.
Shanei A, Akbari-Zadeh H. Investigating the sonodynamic-radiosensitivity Effect of gold nanoparticles on HeLa cervical cancer cells. J Korean Med Sci. 2019;34(37):e243. doi: 10.3346/jkms.2019.34.e243.
Ventola CL. The antibiotic resistance crisis: part 1: causes and threats. P T. 2015;40(4):277-283.
Mai B, Wang X, Liu Q, Zhang K, Wang P. The application of DVDMS as a sensitizing agent for sono-/photo-therapy. Front Pharmacol. 2020;11:19. doi: 10.3389/fphar.2020.00019.
Ohmura T, Fukushima T, Shibaguchi H, Yoshizawa S, Inoue T, Kuroki M, et al. Sonodynamic therapy with 5-aminolevulinic acid and focused ultrasound for deep-seated intracranial glioma in rat. Anticancer Res. 2011;31(7):2527-2533.
Fan Z, Kumon RE, Deng CX. Mechanisms of microbubble-facilitated sonoporation for drug and gene delivery. Ther Deliv. 2014;5(4):467-486. doi: 10.4155/tde.14.10.
Serpe L, Foglietta F, Canaparo R. Nanosonotechnology: the next challenge in cancer sonodynamic therapy. Nanotechnol Rev. 2012;1(2):173-182. doi: 10.1515/ntrev-2011-0009
Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev. 2015;4(1):1. doi: 10.1186/2046-4053-4-1.
Ensing GT, Roeder BL, Nelson JL, van Horn JR, van der Mei HC, Busscher HJ, et al. Effect of pulsed ultrasound in combination with gentamicin on bacterial viability in biofilms on bone cements in vivo. J Appl Microbiol. 2005;99(3):443-8. doi: 10.1111/j.1365-2672.2005.02643.x.
Dadjour MF, Ogino C, Matsumura S, Nakamura S, Shimizu N. Disinfection of Legionella pneumophila by ultrasonic treatment with TiO2. Water Res. 2006;40(6):1137-42. doi: 10.1016/j.watres.2005.12.047.
Tachibana K, Feril LB Jr, Ikeda-Dantsuji Y. Sonodynamic therapy. Ultrasonics. 2008;48(4):253-259. doi: 10.1016/j.ultras.2008.02.003.
Drakopoulou S, Terzakis S, Fountoulakis MS, Mantzavinos D, Manios T. Ultrasound-induced inactivation of gram-negative and gram-positive bacteria in secondary treated municipal wastewater. Ultrason Sonochem. 2009;16(5):629-34. doi: 10.1016/j.ultsonch.2008.11.011.
Rahman MM, Ninomiya K, Ogino C, Shimizu N. Ultrasound-induced membrane lipid peroxidation and cell damage of Escherichia coli in the presence of non-woven TiO2 fabrics. Ultrason Sonochem. 2010;17(4):738-43. doi: 10.1016/j.ultsonch.2009.12.001.
Liu B, Wang DJ, Liu BM, Wang X, He LL, Wang J, et al. The influence of ultrasound on the fluoroquinolones antibacterial activity. Ultrason Sonochem. 2011;18(5):1052-1056. doi: 10.1016/j.ultsonch.2011.02.001.
Nakonechny F, Nisnevitch M, Nitzan Y, Nisnevitch M. Sonodynamic excitation of Rose Bengal for eradication of gram-positive and gram-negative bacteria. Biomed Res Int. 2013;2013:684930. doi: 10.1155/2013/684930.
Zhuang D, Hou C, Bi L, Han J, Hao Y, Cao W, et al. Sonodynamic effects of hematoporphyrin monomethyl ether on Staphylococcus aureus in vitro. FEMS Microbiol Lett. 2014;361(2):174-80. doi: 10.1111/1574-6968.12628.
Wang X, Ip M, Leung AW, Xu C. Sonodynamic inactivation of methicillin-resistant Staphylococcus aureus in planktonic condition by curcumin under ultrasound sonication. Ultrasonics. 2014;54(8):2109-2114. doi: 10.1016/j.ultras.2014.06.017.
Wang X, Ip M, Leung AW, Yang Z, Wang P, Zhang B, et al. Sonodynamic action of curcumin on foodborne bacteria Bacillus cereus and Escherichia coli. Ultrasonics. 2015;62:75-79. doi: 10.1016/j.ultras.2015.05.003.
Wang X, Ip M, Leung AW, Wang P, Zhang H, Hua H, et al. Sonodynamic action of hypocrellin B on methicillin-resistant Staphylococcus aureus. Ultrasonics. 2016;65:137-44. doi: 10.1016/j.ultras.2015.10.008.
Costley D, Nesbitt H, Ternan N, Dooley J, Huang YY, Hamblin MR, et al. Sonodynamic inactivation of Gram-positive and Gram-negative bacteria using a Rose Bengal-antimicrobial peptide conjugate. Int J Antimicrob Agents. 2017;49(1):31-36. doi: 10.1016/j.ijantimicag.2016.09.034.
Xu F, Hu M, Liu C, Choi SK. Yolk-structured multifunctional up-conversion nanoparticles for synergistic photodynamic-sonodynamic antibacterial resistance therapy. Biomater Sci. 2017;5(4):678-685. doi: 10.1039/c7bm00030h.
Pang X, Xiao Q, Cheng Y, Ren E, Lian L, Zhang Y, et al. Bacteria-responsive nanoliposomes as smart sonotheranostics for multidrug resistant bacterial infections. ACS Nano. 2019;13(2):2427-2438. doi: 10.1021/acsnano.8b09336.
Moher D, Hopewell S, Schulz KF, Montori V, Gøtzsche PC, Devereaux PJ, et al. CONSORT 2010 explanation and elaboration: updated guidelines for reporting parallel group randomised trials. Int J Surg. 2012;10(1):28-55. doi: 10.1016/j.ijsu.2011.10.001.
Bailey MR, Khokhlova VA, Sapozhnikov OA, Kargl SG, Crum LA. Physical mechanisms of the therapeutic effect of ultrasound (A review). Acoust Phys. 2003;49:369-88. doi: 10.1134/1.1591291.
Rosenthal I, Sostaric JZ, Riesz P. Sonodynamic therapy–A review of the synergistic effects of drugs and ultrasound. Ultrason Sonochem. 2004;11(6):349-363. doi: 10.1016/j.ultsonch.2004.03.004.
Suzuki N, Okada K, Chida S, Komori C, Shimada Y, Suzuki T. Antitumor effect of acridine orange under ultrasonic irradiation in vitro. Anticancer Res. 2007;27(6B):4179-4184.
Yumita N, Han QS, Kitazumi I, Umemura S. Sonodynamically-induced apoptosis, necrosis, and active oxygen generation by mono-l-aspartyl chlorin e6. Cancer Sci. 2008;99(1):166-172. doi: 10.1111/j.1349-7006.2007.00653.x.
Tachibana K, Uchida T, Tamura K, Eguchi H, Yamashita N, Ogawa K. Enhanced cytotoxic effect of Ara-C by low intensity ultrasound to HL-60 cells. Cancer Lett. 2000;149(1-2):189-194. doi: 10.1016/s0304-3835(99)00358-4.
Meng L, Liu X, Wang Y, Zhang W, Zhou W, Cai F, et al. Sonoporation of cells by a parallel stable cavitation microbubble array. Adv Sci (Weinh). 2019;6(17):1900557. doi: 10.1002/advs.201900557.
- Abstract Viewed: 616 times
- PDF Downloaded: 415 times