Using the Hair Removal Laser in the Axillary Region and its Effect on Normal Microbial Flora
Journal of Lasers in Medical Sciences,
Vol. 11 No. 3 (2020),
21 June 2020
,
Page 255-261
Abstract
Introduction: The axillary hair removal laser is one of the most often used procedures to treat unwanted hairs in that region. Employing this technology can be helpful in decreasing the bromhidrosis.
Methods: In the present research, a clinical trial study over the effect of the hair removal laser on normal microbial flora at the axillary region is presented. The intervention group consisted of 30 women referred to the dermatologic clinic for the purpose of removing axillary hair by the alexandrite 755 nm laser and the control group consisted of 30 women referred to the same clinic for any other reasons. Both groups were evaluated for the type of bacterial strains on the first visit and after three and six months.
Results: The results showed that the sense of sweat smell improved by about 63% after the last laser session. The frequency of all bacterial strains decreased in the intervention group except Staphylococcus epidermidis which was significant. In the control group, there was no significant decrement in any bacterial strains and even the prevalence of more strains including Staphylococcus aureus and S. epidermidis increased. Counting the mean bacterial colon showed a slight decrement of the bacterial count following the laser.
Conclusion: The use of laser radiation, even with the aim of hair removal, can alter the microbial flora, and it can be accompanied by the improvement of the smell of sweat. The effect of the laser on different bacterial strains is quite different, which can depend on the amount of energy, the wavelength, the characteristics of the area under the laser, and also the structural properties of the membrane of the microorganism itself.
- Alexandrite Laser
- Microbial Flora
- Hair Removal
- Axillary Odor
- Bacterial strains
How to Cite
References
Grice EA. The intersection of microbiome and host at the skin interface: genomic- and metagenomic-based insights. Genome Res. 2015;25(10):1514-20. doi: 10.1101/gr.191320.115.
Roth RR, James WD. Microbial ecology of the skin. Annu Rev Microbiol. 1988;42:441-64. doi:10.1146/annurev.mi.42.100188.002301.
Bolognia JL, Jorizzo JL, Schaffer JV. Dermatology. 3rd ed. London: Elsevier Saunders; 2012.
Noble WC. Skin bacteriology and the role of Staphylococcus aureus in infection. Br J Dermatol. 1998;139(Suppl 53):9-12. doi:10.1046/j.1365-2133.1998.1390s3009.x.
Leyden JJ, McGinley KJ, Hölzle E, Labows JN, Kligman AM. The microbiology of the human axilla and its relationship to axillary odor. J Invest Dermatol. 1981;77(5):413-416. doi:10.1111/1523-1747.ep12494624.
Taylor D, Daulby A, Grimshaw S, James G, Mercer J, Vaziri S. Characterization of the microflora of the human axilla. Int J Cosmet Sci. 2003;25(3):137-145. doi:10.1046/j.1467-2494.2003.00181.x.
Callewaert C, Kerckhof FM, Granitsiotis MS, Van Gele M, Van de Wiele T, Boon N. Characterization of Staphylococcus and Corynebacterium clusters in the human axillary region. PLoS One. 2013;8(8):e70538. doi: 10.1371/journal.pone.0070538.
Labows JN, Preti G, Hoelzle E, Leyden J, Kligman A. Steroid analysis of human apocrine secretion. Steroids. 1979;34(3):249-258. doi:10.1016/0039-128x(79)90077-1.
Greene RS, Downing DT, Pochi PE, Strauss JS. Anatomical variation in the amount and composition of human skin surface lipid. J Invest Dermatol. 1970;54(3):240-247. doi:10.1111/1523-1747.ep12280318.
Wilke K, Martin A, Terstegen L, Biel SS. A short history of sweat gland biology. Int J Cosmet Sci. 2007;29(3):169-179. doi:10.1111/j.1467-2494.2007.00387.x.
James AG, Austin CJ, Cox DS, Taylor D, Calvert R. Microbiological and biochemical origins of human axillary odour. FEMS Microbiol Ecol. 2013;83(3):527-540. doi:10.1111/1574-6941.12054.
Barzantny H, Brune I, Tauch A. Molecular basis of human body odour formation: insights deduced from corynebacterial genome sequences. Int J Cosmetic Sci. 2012;34(1):2-11. doi:10.1111/j.1468-2494.2011.00669.x.
Schommer NN, Gallo RL. Structure and function of the human skin microbiome. Trends Microbiol. 2013;21(12):660-668. doi:10.1016/J.TIM.2013.10.001.
Rieg S, Seeber S, Steffen H, Humeny A, Kalbacher H, Stevanovic S, et al. Generation of multiple stable dermcidin-derived antimicrobial peptides in sweat of different body sites. J Invest Dermatol. 2006;126(2):354-365. doi:10.1038/sj.jid.5700041.
Ibrahimi OA, Avram MM, Hanke CW, Kilmer SL, Anderson RR. Laser hair removal. Dermatol Ther. 2011;24(1):94-107. doi:10.1111/j.1529-8019.2010.01382.x.
Dierickx CC, Grossman MC, Farinelli WA, Anderson RR. Permanent hair removal by normal-mode ruby laser. Arch Dermatol. 1998;134(7):837-842. doi:10.1001/archderm.134.7.837.
Görgü M, Aslan G, Aköz T, Erdoğan B. Comparison of alexandrite laser and electrolysis for hair removal. Dermatol Surg. 2000;26(1):37-41. doi:10.1046/j.1524-4725.2000.99104.x.
Lou WW, Quintana AT, Geronemus RG, Grossman MC. Prospective study of hair reduction by diode laser (800nm) with long-term follow-up. Dermatol Surg. 2000;26(5):428-432. doi:10.1046/j.1524-4725.2000.99260.x.
Fayne RA, Perper M, Eber AE, Aldahan AS, Nouri K. Laser and light treatments for hair reduction in Fitzpatrick skin types IV–VI: A comprehensive review of the literature. Am J Clin Dermatol. 2018;19(2):237-52. doi: 10.1007/s40257-017-0316-7.
Anderson RR, Parrish JA. Selective photothermolysis: Precise microsurgery by selective absorption of pulsed radiation. Science. 1983;220(4596):524-527. doi:10.1126/science.6836297.
Altshuler GB, Anderson RR, Manstein D, Zenzie HH, Smirnov MZ. Extended theory of selective photothermolysis. Lasers Surg Med. 2001;29(5):416-432. doi:10.1002/lsm.1136.
Greveling K, Prens EP, Liu L, van Doorn MBA. Non-invasive anaesthetic methods for dermatological laser procedures: a systematic review. J Eur Acad Dermatol Venereol. 2017;31(7):1096-1110. doi:10.1111/jdv.14130.
Haedersdal M, Wulf HC. Evidence-based review of hair removal using lasers and light sources. J Eur Acad Dermatol Venereol. 2006;20(1):9-20. doi:10.1111/j.1468-3083.2005.01327.x.
Grunewald S, Bodendorf MO, Zygouris A, Simon JC, Paasch U. Long-term efficacy of linear-scanning 808nm diode laser for hair removal compared to a scanned alexandrite laser. Lasers Surg Med. 2014;46(1):13-19. doi:10.1002/lsm.22185.
Handrick C, Alster TS. Comparison of long-pulsed diode and long-pulsed alexandrite lasers for hair removal: a long-term and histologic study. Dermatol Surg. 2001;27(7):622-626. doi:10.1046/j.1524-4725.2001.00338.x.
Jung SK, Jang HW, Kim HJ, Lee SG, Lee KG, Kim SY, et al. A prospective, long-term follow-up study of 1,444 nm Nd:YAG laser: A new modality for treating axillary bromhidrosis. Ann Dermatol. 2014;26(2):184-188. doi:10.5021/ad.2014.26.2.184.
Helou J, Haber R, Kechichian E, Tomb R. A case of generalized bromhidrosis following whole-body depilatory laser. J Cosmet Laser Ther. 2015;17(6):318-320. doi:10.3109/14764172.2015.1027232.
Hélou J, Soutou B, Jamous R, Tomb R. Novel adverse effects of laser-assisted axillary hair removal]. Ann Dermatol Venereol. 2009;136(6-7):495-500. doi:10.1016/j.annder.2009.04.005.
Semkova K, Gergovska M, Kazandjieva J, Tsankov N. Hyperhidrosis, bromhidrosis, and chromhidrosis: Fold (intertriginous) dermatoses. Clin Dermatol. 2015;33(4):483-491. doi:10.1016/j.clindermatol.2015.04.013.
Nussbaum EL, Mazzulli T, Pritzker KP, Heras FL, Jing F, Lilge L. Effects of low intensity laser irradiation during healing of skin lesions in the rat. Lasers Surg Med. 2009;41(5):372-381. doi:10.1002/lsm.20769.
Manolis EN, Tsakris A, Kaklamanos I, Markogiannakis A, Siomos K. In vivo effect of carbon dioxide laser skin resurfacing and mechanical abrasion on the skin's microbial flora in an animal model. Dermatol surg. 2006;32(3):359-364. doi:10.1111/j.1524-4725.2006.32073.x.
Pereira PR, de Paula JB, Cielinski J, Pilonetto M, Von Bahten LC. Effects of low intensity laser in in vitro bacterial culture and in vivo infected wounds. Rev Col Bras Cir. 2014;41(1):49-55. doi:10.1590/s0100-69912014000100010.
Johnson TR, Case CL. Laboratory Experiments in Microbiology. 11th ed. NY: Pearson; 2015.
Goldman E, Green LH, editors. Practical Handbook of Microbiology. 2nd ed. Boca Raton, Florida: CRC Press; 2008.
Murray PR, Baron EJ, Jorgensen JH, Landry ML, Pfaller MA. Manual of Clinical Microbiology. 9th ed. Washington, D.C.: ASM Press; 2007.
Hedges AJ. Estimating the precision of serial dilutions and viable bacterial counts. Int J Food Microbiol. 2002;76(3):207-214. doi.org/10.1016/S0168-1605(02)00022-3.
Jett BD, Hatter KL, Huycke MM, Gilmore MS. Simplified agar plate method for quantifying viable bacteria. Biotechniques. 1997;23(4):648-650. doi:10.2144/97234bm22.
. Boczek LA, Rice EW, Johnson CH. Total viable counts: Pour plate technique. In: Messer JM, Rice EW, Johnson CH, eds. Encyclopedia of food microbiology. 2nd ed. Elsevier; 2014. doi:10.1016/B978-0-12-384730-0.00330-X
Thomas P, Sekhar AC, Mujawar MM. Nonrecovery of varying proportions of viable bacteria during spread plating governed by the extent of spreader usage and proposal for an alternate spotting-spreading approach to maximize the CFU. J Appl Microbiol. 2012;113(2):339-350. doi:10.1111/j.1365-2672.2012.05327.x.
Thomas P, Mujawar MM, Sekhar AC, Upreti R. Physical impaction injury effects on bacterial cells during spread plating influenced by cell characteristics of the organisms. J Appl Microbiol. 2014;116(4):911-922. doi:10.1111/jam.12412.
Troccaz M, Gaïa N, Beccucci S, Schrenzel J, Cayeux I, Starkenmann C, et al. Mapping axillary microbiota responsible for body odours using a culture-independent approach. Microbiome. 2015:24;3(1):3. doi: 10.1186/s40168-014-0064-3.Steroids. 2015;22:20-26. doi:10.1186/s40168-014-0064-3.
- Abstract Viewed: 706 times
- PDF Downloaded: 407 times