Therapeutic Potential of Photobiomodulation In Alzheimer’s Disease: A Systematic Review Photobiomodulation in Alzheimer’s Disease
Journal of Lasers in Medical Sciences,
Vol. 11 No. Supplement (2020),
30 December 2020
,
Page S16-S22
Abstract
Introduction: Alzheimer’s disease (AD) is characterized by the decline of cognitive functions such as learning and memory. Scientific society has proposed some non-pharmacological interventions, among which photobiomodulation has gained prominence for its beneficial effects. Therefore, we investigated, through systematic review, the therapeutic potential of photobiomodulation in AD.
Methods: This systematic review was registered under the number CRD42019128416 in the International Prospective Record of Systematic Reviews (PROSPERO). A systematic search was conducted on the bibliographic databases (PubMed and ScienceDirect) with the keywords based on MeSH terms: “photobiomodulation therapy” or “low-level laser therapy” or “LLLT” or “light-emitting diode” and “amyloid” or “Alzheimer”. The data search was conducted from 2008 to 2019. We follow the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline. The search strategy included experimental in vivo and in vitro studies in the English language and photobiomodulation as a non-pharmacological intervention. We included 10 studies,
being 5 in vivo studies, 4 in vitro studies, and 1 study using in vivo and in vitro. To evaluate the quality of the studies, we used the Rob tool of the Systematic Review Center for Laboratory Animal Experimentation (SYRLE).
Results: The studies showed that photobiomodulation is able to reduce the inflammatory response, oxidative stress, and apoptotic effects generated by amyloid-beta (Aβ) and restore mitochondrial function and cognitive behavior.
Conclusion: Taken together, these results indicate that photobiomodulation may be a useful tool for treating AD.
- Photobiomodulation therapy; Low-level laser therapy; LLLT; Light emitting diode; Amyloid; Alzheimer’s disease.
How to Cite
References
Forman MS, Trojanowski JQ, Lee VMY. Neurodegenerative diseases: a decade of discoveries paves the way for therapeutic breakthroughs. Nat Med. 2004;10(10):1055-63. doi: 10.1038/nm1113.
World Health Organization. Active ageing: A policy framework. No. WHO/NMH/NPH/02.8. World Health Organization, 2002.
Förstl H, Kurz A. Clinical features of Alzheimer’s disease. Eur Arch Psychiatry Clin Neurosci. 1999;249(6):288-290. doi: 10.1007/s004060050101.
Francis PT, Palmer AM, Snape M, Wilcock GK. The cholinergic hypothesis of Alzheimer’s disease: a review of progress. J Neurol, Neurosurg Psychiatry. 1999;66(2):137-147. doi: 10.1136/jnnp.66.2.137.
Racchi M, Govoni S. The pharmacology of amyloid precursor protein processing. Exp Gerontol. 2003;38(1-2):145-157. doi: 10.1016/s0531-5565(02)00158-4.
Haass C. Take five—BACE and the γ‐secretase quartet conduct Alzheimer's amyloid β‐peptide generation. EMBO J. 2004;23(3), 483-488. doi: 10.1038/sj.emboj.7600061.
Selkoe DJ. Defining molecular targets to prevent Alzheimer disease. Arch Neurol. 2005;62(2):192-195. doi: 10.1001/archneur.62.2.192.
Jenkins SM, Johnson GV. Modulation of tau phosphorylation within its microtubule-binding domain by cellular thiols. J Neurochem. 1999;73(5):1843-1850.
Gauthier S, Reisberg B, Zaudig M, Petersen RC, Ritchie K, Broich K, et al. Mild cognitive impairment. Lancet. 2006;367(9518):1262-1270. doi: 10.1016/S0140-6736(06)68542-5.
Grossman H, Bergmann C, Parker S. Dementia: a brief review. Mt Sinai J Med. 2006;73(7):985-992.
Olazarán J, Muñiz R, Reisberg B, Peña-Casanova J, del Ser T, Cruz-Jentoft AJ, et al. Benefits of cognitive-motor intervention in MCI and mild to moderate Alzheimer disease. Neurology. 2004;63(12):2348-2353. doi: 10.1212/01.wnl.0000147478.03911.28.
Rozzini L, Costardi D, Chilovi BV, Franzoni S, Trabucchi M, Padovani A. Efficacy of cognitive rehabilitation in patients with mild cognitive impairment treated with cholinesterase inhibitors. Int J Geriatr Psychiatry. 2007;22(4):356-360. doi: 10.1002/gps.1681.
Ávila A, De‐Rosende‐Celeiro I, Torres G, Vizcaíno M, Peralbo M, Durán M. Promoting functional independence in people with Alzheimer's disease: Outcomes of a home‐based occupational therapy intervention in Spain. Health Soc Care Community. 2018;26(5):734-743. doi: 10.1111/hsc.12594.
Podewils LJ, Guallar E, Kuller LH, Fried LP, Lopez OL, Carlson M, et al. Physical activity, APOE genotype, and dementia risk: findings from the Cardiovascular Health Cognition Study. Am J Epidemiol. 2005;161(7):639-651. doi: 10.1093/aje/kwi092.
Larson EB. Physical activity for older adults at risk for Alzheimer disease. JAMA. 2008;300(9):1077-1079. doi: 10.1001/jama.300.9.1077.
Chung H, Dai T, Sharma SK, Huang YY, Carroll JD, Hamblin MR. The nuts and bolts of low-level laser (light) therapy. Ann Biomed Eng. 2012;40(2):516-533. doi: 10.1007/s10439-011-0454-7.
Meng C, He Z, Xing D. Low-level laser therapy rescues dendrite atrophy via upregulating BDNF expression: implications for Alzheimer's disease. J Neurosci. 2013;33(33):13505-13517. doi: 10.1523/JNEUROSCI.0918-13.2013.
De Taboada L, Yu J, El-Amouri S, Gattoni-Celli S, Richieri S, McCarthy T, et al. Transcranial laser therapy attenuates amyloid-β peptide neuropathology in amyloid-β protein precursor transgenic mice. J Alzheimers Dis. 2011;23(3):521-535. doi: 10.3233/JAD-2010-100894.
de Freitas LF, Hamblin MR. Proposed mechanisms of photobiomodulation or low-level light therapy. IEEE J Sel Top Quantum Electron. 2016;22(3):7000417. doi: 10.1109/JSTQE.2016.2561201.
Hamblin MR. Shining light on the head: photobiomodulation for brain disorders. BBA Clin. 2016;6:113-124. doi: 10.1016/j.bbacli.2016.09.002.
Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group. (2009). Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med. 2009;151(4):264-269. doi: 10.7326/0003-4819-151-4-200908180-00135.
Wright RW, Brand RA, Dunn W, Spindler KP. How to write a systematic review. Clin Orthop Relat Res. 2007;455:23-9. doi: 10.1097/BLO.0b013e31802c9098.
Hooijmans CR, Rovers MM, de Vries RB, Leenaars M, Ritskes-Hoitinga M, Langendam MW. SYRCLE’s risk of bias tool for animal studies. BMC Med Res Methodol. 2014;14:43. doi: 10.1186/1471-2288-14-43.
da Luz Eltchechem C, Salgado ASI, Zângaro RA, da Silva Pereira MC, Kerppers II, da Silva LA, et al. Transcranial LED therapy on amyloid-β toxin 25–35 in the hippocampal region of rats. Lasers Med Sci. 2017;32(4):749-756. doi: 10.1007/s10103-017-2156-3.
Purushothuman S, Johnstone DM, Nandasena C, Mitrofanis J, Stone J. Photobiomodulation with near infrared light mitigates Alzheimer’s disease-related pathology in cerebral cortex– evidence from two transgenic mouse models. Alzheimers Res Ther. 2014;6(1):2. doi: 10.1186/alzrt232.
Cho GM, Lee SY, Park JH, Kim MJ, Park KJ, Choi BT, et al. Photobiomodulation using a low-level light-emitting diode improves cognitive dysfunction in the 5XFAD mouse model of Alzheimer’s disease. J Gerontol A Biol Sci Med Sci. 2020;75(4):631-9. doi: 10.1093/gerona/gly240.
Lu Y, Wang R, Dong Y, Tucker D, Zhao N, Ahmed ME, et al. Low-level laser therapy for beta amyloid toxicity in rat hippocampus. Neurobiol Aging. 2017;49:165-182. doi: 10.1016/j.neurobiolaging.2016.10.003.
Liang J, Liu L, Xing D. Photobiomodulation by low-power laser irradiation attenuates Aβ-induced cell apoptosis through the Akt/GSK3β/β-catenin pathway. Free Radic Biol Med. 53(7):1459-1467. doi: 10.1016/j.freeradbiomed.2012.08.003.
Zhang L, Xing D, Zhu D, Chen Q. Low-power laser irradiation inhibiting Aβ25-35-induced PC12 cell apoptosis via PKC activation. Cell Physiol Biochem. 2008;22(1-4), 215-222. doi: 10.1159/000149799.
Zhang H, Wu S, Xing D. Inhibition of Aβ25–35-induced cell apoptosis by low-power-laser-irradiation (LPLI) through promoting Akt-dependent YAP cytoplasmic translocation. Cell signal. 2012;24(1):224-232. doi: 10.1016/j.cellsig.2011.09.004.
Yang X, Askarova S, Sheng W, Chen JK, Sun AY, Sun GY, et al. Low energy laser light (632.8 nm) suppresses amyloid-β peptide-induced oxidative and inflammatory responses in astrocytes. Neuroscience. 2010;171(3):859-868. doi: 10.1016/j.neuroscience.2010.09.025.
Cai H, Wang Y, McCarthy D, Wen H, Borchelt DR, Price DL, et al. BACE1 is the major β-secretase for generation of Aβ peptides by neurons. Nat Neurosci. 2001;4(3):233-4. doi: 10.1038/85064.
Hook VYH, Kindy M, Reinheckel T, Peters C, Hook G. Genetic cathepsin B deficiency reduces β-amyloid in transgenic mice expressing human wild-type amyloid precursor protein. Biochem Biophys Res Commun. 2009;386(2), 284-288. doi: 10.1016/j.bbrc.2009.05.131.
Chao CC, Hu S, Sheng WS, Bu D, Bukrinsky MI, Peterson PK. Cytokine‐stimulated astrocytes damage human neurons via a nitric oxide mechanism. Glia. 1996;16(3):276-284. doi: 10.1002/(SICI)1098-1136(199603)16:3<276::AID-GLIA10>3.0.CO;2-X.
Johnstone M, Gearing AJ, Miller KM. A central role for astrocytes in the inflammatory response to β-amyloid; chemokines, cytokines and reactive oxygen species are produced. J Neuroimmunol. 1999;93(1-2):182-193. doi: 10.1016/s0165-5728(98)00226-4.
Apelt J, Schliebs R. β-amyloid-induced glial expression of both pro-and anti-inflammatory cytokines in cerebral cortex of aged transgenic Tg2576 mice with Alzheimer plaque pathology. Brain Res. 2001;894(1):21-30. doi: 10.1016/s0006-8993(00)03176-0.
Itagaki S, McGeer PL, Akiyama H, Zhu S, Selkoe D. Relationship of microglia and astrocytes to amyloid deposits of Alzheimer disease. J Neuroimmunol. 1989;24(3):173-182. doi: 10.1016/0165-5728(89)90115-x.
Hu J, Akama KT, Krafft GA, Chromy BA, Van Eldik LJ. Amyloid-β peptide activates cultured astrocytes: morphological alterations, cytokine induction and nitric oxide release. Brain Res. 1998;785(2):195-206. doi: 10.1016/s0006-8993(97)01318-8.
Yates SL, Burgess LH, Kocsis‐Angle J, Antal JM, Dority MD, Embury PB, et al. Amyloid β and amylin fibrils induce increases in proinflammatory cytokine and chemokine production by THP‐1 cells and murine microglia. J Neurochem. 2000;74(3):1017-1025. doi: 10.1046/j.1471-4159.2000.0741017.x.
Pettegrew JW, Panchalingam K, Klunk WE, McClure RJ, Muenz LR. Alterations of cerebral metabolism in probable Alzheimer's disease: a preliminary study. Neurobiol Aging. 1994;15(1):117-132. doi: 10.1016/0197-4580(94)90152-x.
Bosetti F, Brizzi F, Barogi S, Mancuso M, Siciliano G, Tendi EA, et al. Cytochrome c oxidase and mitochondrial F1F0-ATPase (ATP synthase) activities in platelets and brain from patients with Alzheimer’s disease. Neurobiol Aging. 2002;23(3):371-376. doi: 10.1016/s0197-4580(01)00314-1.
Terni B, Boada J, Portero‐Otin M, Pamplona R, Ferrer I. Mitochondrial ATP‐synthase in the entorhinal cortex is a target of oxidative stress at stages I/II of Alzheimer's disease pathology. Brain pathol. 2010;20(1):222-233. doi: 10.1111/j.1750-3639.2009.00266.x.
Hatefi Y. The mitochondrial electron transport and oxidative phosphorylation system. Annu Rev Biochem. 1985;54:1015-1069. doi: 10.1146/annurev.bi.54.070185.005055.
Ludwig B, Bender E, Arnold S, Hüttemann M, Lee I, Kadenbach B. Cytochrome C oxidase and the regulation of oxidative phosphorylation. Chembiochem. 2001;2(6):392-403. doi: 10.1002/1439-7633(20010601)2:6<392::AID-CBIC392>3.0.CO;2-N.
Barnes CA, Jung MW, McNaughton BL, Korol DL, Andreasson K, Worley PF. LTP saturation and spatial learning disruption: effects of task variables and saturation levels. J Neurosci. 1994;14(10):5793-5806. doi: 10.1523/JNEUROSCI.14-10-05793.1994.
Leger M, Quiedeville A, Bouet V, Haelewyn B, Boulouard M, Schumann-Bard P, et al. Object recognition test in mice. Nat Protoc. 2013;8(12):2531-7. doi: 10.1038/nprot.2013.155.
Counts SE, Alldred MJ, Che S, Ginsberg SD, Mufson EJ. Synaptic gene dysregulation within hippocampal CA1 pyramidal neurons in mild cognitive impairment. Neuropharmacology.
- Abstract Viewed: 1634 times
- PDF Downloaded: 749 times