Shahid Beheshti University of Medical Sciences
  • Register
  • Login

Journal of Lasers in Medical Sciences

  • Issues
    • Current Issue
    • Archives
  • Journal Info
    • About the Journal
    • Editorial Team
    • Indexing/Abstracting
    • Contact Us
  • Author Guideline
    • Submission Guide
    • Author Statement Form
    • Peer Review Process
    • Publication Fee
  • Ethics & Policies
    • Ethical Requirements
    • Authorship Rules
    • Withdrawal Regulations
    • Retraction Considerations
    • Privacy Statement
  • Reviewer Guideline
  • New Submission
Advanced Search
  1. Home
  2. Archives
  3. Vol. 11 No. 1 (2020): Winter
  4. Original Article

Vol. 11 No. 1 (2020)

January 2020

Detection of Nicotine Effect on Colon Cells in a Plasmonic Platform

  • Tannaz Asadishad
  • Foozieh Sohrabi
  • Mohammad Hossein Ghazimoradi
  • Seyedeh Mehri Hamidi
  • Saeed Javadi Anaghizi
  • Shirin Farivar

Journal of Lasers in Medical Sciences, Vol. 11 No. 1 (2020), 18 January 2020 , Page 8-13
Published: 2020-01-18

  • View Article
  • Download
  • Cite
  • References
  • Statastics
  • Share

Abstract

Introduction: Smoking as one of the causes of various diseases has encouraged worldwide studies on its adverse pharmacological effects on different organs. Nicotine may influence the smooth muscles of the colon and subsequently the gut motility, which leads to a change in the moving rate of digested material through the gastrointestinal tract.

Methods: Among various techniques, optical detection methods benefit from non-contact and high-sensitivity for studying the early effect of nicotine on the cells. Thus, we used an optically ellipsometric method to get the fast and sensitive nicotine effect on the colon cell. Two-dimensional plasmonic platforms by gold deposition onto the polydimethylsiloxane polymer (PDMS) patterned substrate were used as the guest medium of the cell and the sample was excited by all of the visible region wavelengths at different exposure time and maintenance time.

Results: Our results showed that the phase difference between each polarization increased by augmenting the exposure time of smoke over the cell at a fixed maintenance time and there was a general red-shift by increasing the maintenance time at a fixed exposure time.

Conclusion: Using different exposure time to cigarette smoke, we optically showed that the cigarette containing the addicting chemical of nicotine had a direct effect on the cultured colon cells on our 2D biocompatible plasmonic chip. It demonstrated considerable changes in the amplitude and phase of the interacted light by injecting nicotine into the system with the aid of the label-free and non-invasive plasmonic technique.

Keywords:
  • Nicotine
  • Sensing
  • Surface plasmon polariton (SPP)
  • Ellipsometry
  • Colon cell
  • PDF

How to Cite

Asadishad, T., Sohrabi, F., Ghazimoradi, M. H., Hamidi, S. M., Javadi Anaghizi, S., & Farivar, S. (2020). Detection of Nicotine Effect on Colon Cells in a Plasmonic Platform. Journal of Lasers in Medical Sciences, 11(1), 8–13. Retrieved from https://journals.sbmu.ac.ir/jlms/article/view/26312
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

References

Wong HP, Yu LE, Lam EK, Tai EK, Wu WK, Cho CH. Nicotine promotes colon tumor growth and angiogenesis through β-adrenergic activation. Toxicol Sci. 2007;97(2):279-87. doi: 10.1093/toxsci/kfm060

Wong HP, Yu L, Lam EK, Tai EK, Wu WK, Cho CH. Nicotine promotes cell proliferation via α7-nicotinic acetylcholine

receptor and catecholamine-synthesizing enzymesmediated pathway in human colon adenocarcinoma HT- 29 cells. Toxicol Appl Pharmacol. 2007;221(3):261-7. doi: 10.1016/j.taap.2007.04.002

Yi NY, Liu ES, Shin VY, Wu WK, Luo JC, Cho CH. Nicotine promoted colon cancer growth via epidermal growth factor receptor, c-Src, and 5-lipoxygenase-mediated signal pathway. J Pharmacol Exp Ther. 2004;308(1):66-72. doi: 10.1124/jpet.103.058321

Dasgupta P, Rizwani W, Pillai S, Kinkade R, Kovacs M, Rastogi S, et al. Nicotine induces cell proliferation, invasion

and epithelial‐mesenchymal transition in a variety of human cancer cell lines. Int J Cancer. 2009;124(1):36-45.

doi: 10.1002/ijc.23894

Stockman MI. Nanoplasmonic sensing and detection. Science. 2015;348(6232):287-8. doi: 10.1126/science.aaa6805

Van Der Pol E, Hoekstra AG, Sturk A, Otto C, Van Leeuwen TG, Nieuwland R. Optical and non‐optical methods for

detection and characterization of microparticles and exosomes. J Thromb Haemost. 2010;8(12):2596-607. doi:

1111/j.1538-7836.2010.04074.x

Sohrabi F, Hamidi SM, Mohammadi E. Role of higher order plasmonic modes in one-dimensional nanogratings.

Opt Quant Electron. 2019;51(7):241. doi: 10.1007/s11082- 019-1958-x

Dan-Qun H, Zhen L, Hou CJ, Jun Y, Xiao-Gang L, Huan- Bao F, et al. Recent advances on optical detection methods and techniques for cell-based microfluidic systems. Chinese J Anal Chem. 2010;38(9):1357-65. doi: 10.1016/S1872-

(09)60067-0

Sohrabi F, Hamidi SM. Fabrication methods of plasmonic and magnetoplasmonic crystals: a review. Eur Phys J Plus.

;132(1):15. doi: 10.1140/epjp/i2017-11294-2

Dipalo M, Amin H, Lovato L, Moia F, Caprettini V, Messina GC, et al. Intracellular and extracellular recording of

spontaneous action potentials in mammalian neurons and cardiac cells with 3D plasmonic nanoelectrodes. Nano lett.

;17(6):3932-9. doi: 10.1021/acs.nanolett.7b01523

Kaestner M, Krivoshapkina Y, Rangelow IW. Chapter 14, Next generation lithography—the rise of unconventional

methods? In: Frontiers of Nanoscience. Vol. 11. Elsevier; 2016. p. 479-495. doi: 10.1016/B978-0-08-100354-1.00014-4.

Zou Y, Moreel L, Lin H, Zhou J, Li L, Danto S, et al. Solution Processing and Resist‐Free Nanoimprint Fabrication

of Thin Film Chalcogenide Glass Devices: Inorganic– Organic Hybrid Photonic Integration. Adv Opt Mater. 2014;2(8):759-64. doi: 10.1002/adom.201400068

Sohrabi F, Hamidi SM. Optical detection of brain activity using plasmonic ellipsometry technique. Sensor Actuat B-Chem. 2017;251:153-63. doi: 10.1016/j.snb.2017.05.037

Tompkins H, Irene EA. Handbook of Ellipsometry. William Andrew; 2005.

Sohrabi F, Hamidi SM, Asgari N, Ansari MA, Gachiloo R. One dimensional photonic crystal as an efficient tool for

in-vivo optical sensing of neural activity. Opt Mat. 2019; 96:109275. doi: 10.1016/j.optmat.2019.109275

Sohrabi F, Hamidi SM. Neuroplasmonics: from Kretschmann configuration to plasmonic crystals. Eur Phys J Plus. 2016;131(7):221. doi: 10.1140/epjp/i2016-16221-5

Walsh GF, Forestiere C, Dal Negro L. Plasmon-enhanced depolarization of reflected light from arrays of nanoparticle

dimers. Opt Express. 2011;19(21):21081-90. doi: 10.1364/ OE.19.02108

  • Abstract Viewed: 520 times
  • PDF Downloaded: 450 times

Download Statastics

  • Linkedin
  • Twitter
  • Facebook
  • Google Plus
  • Telegram

Make a Submission

Make a Submission

Information

  • For Readers
  • For Authors
  • For Librarians

Developed By

Open Journal Systems
  • Home
  • Archives
  • Submissions
  • About the Journal
  • Editorial Team
  • Contact

Iranian Medical Laser Association 

                                        

 

This journal is distributed under the terms of CC BY-NC 3.0.
Design and publishing by SBMU journals. All credits and honors to PKP for their OJS. 

Powered by OJSPlus