The Effect of Remineralizing Agents With/Without CO2 Laser Irradiation on Structural and Mechanical Properties of Enamel and its Shear Bond Strength to Orthodontic Brackets
Journal of Lasers in Medical Sciences,
Vol. 11 No. 2 (2020),
15 March 2020
,
Page 144-152
Abstract
Introduction: Remineralizing agents may be used for the treatment of white spot lesions (WSLs) prior to bracket bonding. However, some concerns exist regarding their possible interference with the etching and bonding process, negatively affecting the bond strength. This study aimed to assess the effect of two remineralizing agents with/without CO2 laser irradiation on the mechanical properties and shear bond strength (SBS) of demineralized enamel to the orthodontic bracket.
Methods: This study evaluated 60 premolar teeth in 6 groups (n=10) as follows: (I) sound enamel, (II) demineralized enamel, (III) Nupro remineralizing agent (N), (IV) Nupro and CO2 laser (N/L), (V) Teethmate remineralizing agent (T), and (VI) Teethmate and CO2 laser (T/L). The remineralizing agents were applied to the enamel surfaces after their immersion in a demineralizing solution for 5 days. In groups IV and VI, the CO2 laser with a 10.6 μm wavelength, 10 ms pulse duration, a 50 Hz repetition rate, 0.3 mm beam diameter and 0.7 W power was irradiated after applying the remineralizing agents. Brackets were bonded to the enamel surfaces and SBS was measured by a universal testing machine. For the assessment of enamel microhardness, 20 sections of molar teeth were divided into 4 groups (n=5; N, N/L, T, T/L) and their microhardness was measured before demineralization, after demineralization and after remineralization. X-ray diffraction (XRD) analysis, field-emission scanning electron microscopy (FESEM) and energy-dispersive spectrometry (EDS) were carried out to assess the formation of hydroxyapatite. The atomic percentages of the C, O, P, Ca, Na, Si, F and Ca/P ratio were determined by EDS analysis.
Results: The SBS significantly decreased in group II (P < 0.001). There was no significant difference among the groups I, III, IV, V and VI (P < 0.05). This finding was similar to the microhardness results, which showed an increase in microhardness after remineralization (P < 0.05), with no difference among the remineralizing agents. The Ca/P ratio was the highest in the Nupro group and the lowest in the demineralized group.
Conclusion: Remineralizing agents can significantly improve the microhardness and structural properties of demineralized enamel to a level similar to that of sound enamel with no adverse effect on SBS to orthodontic brackets.
- White spot
- CO2 Laser
- Shear strength
- Nupro
- Teethmate
- X-ray diffractions
How to Cite
References
Tanna N, Kao E, Gladwin M, Ngan PW. Effects of sealant and self-etching primer on enamel decalcification. Part I: an in-vitro study. Am J Orthod Dentofacial Orthop. 2009;135(2):199-205. doi: 10.1016/j.ajodo.2008.09.003.
Fernández-Ferrer L, Vicente-Ruíz M, García-Sanz V, Montiel-Company JM, Paredes-Gallardo V, Almerich-Silla JM, et al. Enamel remineralization therapies for treating postorthodontic white-spot lesions: A systematic review. J Am Dent Assoc. 2018;149(9):778-786.e2. doi: 10.1016/j.adaj.2018.05.010.
Chapman JA, Roberts WE, Eckert GJ, Kula KS, González-Cabezas C. Risk factors for incidence and severity of white spot lesions during treatment with fixed orthodontic appliances. Am J Orthod Dentofacial Orthop. 2010;138(2):188-94. doi: 10.1016/j.ajodo.2008.10.019.
Julien KC, Buschang PH, Campbell PM. Prevalence of white spot lesion formation during orthodontic treatment. Angle Orthod. 2013;83(4):641-7. doi: 10.2319/071712-584.1.
Brown MD, Campbell PM, Schneiderman ED, Buschang PH. A practice-based evaluation of the prevalence and predisposing etiology of white spot lesions. Angle Orthod. 2016;86(2):181-6. doi: 10.2319/041515-249.1.
Bergstrand F, Twetman S. A review on prevention and treatment of post-orthodontic white spot lesions - evidence-based methods and emerging technologies. Open Dent J. 2011;5:158-62. doi: 10.2174/1874210601105010158.
Pascotto RC, Navarro MF, Capelozza Filho L, Cury JA. In vivo effect of a resin-modified glass ionomer cement on enamel demineralization around orthodontic brackets. Am J Orthod Dentofacial Orthop. 2004;125(1):36-41. doi: 10.1016/s0889-5406(03)00571-7.
Gontijo L, Cruz Rde A, Brandão PR. Dental enamel around fixed orthodontic appliances after fluoride varnish application. Braz Dent J. 2007;18(1):49-53. doi: 10.1590/s0103-64402007000100011.
Kim MJ, Lim BS, Chang WG, Lee YK, Rhee SH, Yang HC. Phosphoric acid incorporated with acidulated phosphate fluoride gel etchant effects on bracket bonding. Angle Orthod. 2005;75(4):678-84. doi: 10.1043/0003-3219(2005)75[678:PAIWAP]2.0.CO;2.
Meng CL, Li CH, Wang WN. Bond strength with APF applied after acid etching. Am J Orthod Dentofacial Orthop. 1998;114(5):510-3. doi: 10.1016/s0889-5406(98)70170-2.
Park SY, Cha JY, Kim KN, Hwang CJ. The effect of casein phosphopeptide amorphous calcium phosphate on the in vitro shear bond strength of orthodontic brackets. Korean J Orthod. 2013;43(1):23-8. doi: 10.4041/kjod.2013.43.1.23.
Çehreli SB, Şar Ç, Polat-Özsoy Ö, Ünver B, Özsoy S. Effects of a fluoride-containing casein phosphopeptide-amorphous calcium phosphate complex on the shear bond strength of orthodontic brackets. Eur J Orthod. 2012;34(2):193-7. doi: 10.1093/ejo/cjq183.
Keçik D, Cehreli SB, Sar C, Unver B. Effect of acidulated phosphate fluoride and casein phosphopeptide-amorphous calcium phosphate application on shear bond strength of orthodontic brackets. Angle Orthod. 2008;78(1):129-33. doi: 10.2319/122506-529.1.
Reynolds EC. Casein phosphopeptide-amorphous calcium phosphate: the scientific evidence. Adv Dent Res. 2009;21(1):25-9. doi: 10.1177/0895937409335619.
Mehta AB, Kumari V, Jose R, Izadikhah V. Remineralization potential of bioactive glass and casein phosphopeptide-amorphous calcium phosphate on initial carious lesion: An in-vitro pH-cycling study. J Conserv Dent. 2014;17(1):3-7. doi: 10.4103/0972-0707.124085.
Milly H, Festy F, Watson TF, Thompson I, Banerjee A. Enamel white spot lesions can remineralise using bio-active glass and polyacrylic acid-modified bio-active glass powders. J Dent. 2014;42(2):158-66. doi: 10.1016/j.jdent.2013.11.012.
Bakry AS, Takahashi H, Otsuki M, Tagami J. Evaluation of new treatment for incipient enamel demineralization using 45S5 bioglass. Dent Mater. 2014;30(3):314-20. doi: 10.1016/j.dental.2013.12.002.
El-Wassefy NA. Remineralizing effect of cold plasma and/or bioglass on demineralized enamel. Dent Mater J. 2017;36(2):157-67. doi: 10.4012/dmj.2016-219.
Bakry AS, Marghalani HY, Amin OA, Tagami J. The effect of a bioglass paste on enamel exposed to erosive challenge. J Dent. 2014;42(11):1458-63. doi: 10.1016/j.jdent.2014.05.014.
Featherstone JD, Barrett-Vespone NA, Fried D, Kantorowitz Z, Seka W. CO2 laser inhibitor of artificial caries-like lesion progression in dental enamel. J Dent Res. 1998;77(6):1397-403. doi: 10.1177/00220345980770060401.
Sabaeian M, Shahzadeh M. Simulation of temperature and thermally induced stress of human tooth under CO2 pulsed laser beams using finite element method. Lasers Med Sci. 2015;30(2):645-51. doi: 10.1007/s10103-013-1390-6.
Klein AL, Rodrigues LK, Eduardo CP, Nobre dos Santos M, Cury JA. Caries inhibition around composite restorations by pulsed carbon dioxide laser application. Eur J Oral Sci. 2005;113(3):239-44. doi: 10.1111/j.1600-0722.2005.00212.x.
Miresmaeili A, Farhadian N, Rezaei-soufi L, Saharkhizan M, Veisi M. Effect of carbon dioxide laser irradiation on enamel surface microhardness around orthodontic brackets. Am J Orthod Dentofacial Orthop. 2014;146(2):161-5. doi: 10.1016/j.ajodo.2014.04.023.
Whitlock BO 3rd, Eick JD, Ackerman RJ Jr, Glaros AG, Chappell RP. Shear strength of ceramic brackets bonded to porcelain. Am J Orthod Dentofacial Orthop. 1994;106(4):358-64. doi: 10.1016/S0889-5406(94)70056-7.
Reynolds IR. A review of direct orthodontic bonding. Br J Orthod. 1975;2(3):171-8. doi: 10.1080/0301228X.1975.11743666.
Eliades T, Brantley W. The inappropriateness of conventional orthodontic bond strength assessment protocols. Eur J Orthod. 2000;22(1):13-23. doi: 10.1093/ejo/22.1.13.
Mohanty P, Padmanabhan S, Chitharanjan AB. An in vitro evaluation of remineralization potential of Novamin® on artificial enamel sub-surface lesions around orthodontic brackets using energy dispersive x-ray analysis (EDX). J Clin Diagn Res. 2014;8(11):ZC88-91. doi: 10.7860/JCDR/2014/9340.5177.
Pinto de Souza SCT, Araújo KC, Barbosa JR, Cancio V, Rocha AA, Tostes MA. Effect of dentifrice containing fTCP, CPP-ACP and fluoride in the prevention of enamel demineralization. Acta Odontol Scand. 2018;76(3):188-94. doi: 10.1080/00016357.2017.1401658.
Bishara SE, Gordan VV, VonWald L, Olson ME. Effect of an acidic primer on shear bond strength of orthodontic brackets. Am J Orthod Dentofacial Orthop. 1998;114(3):243-7. doi: 10.1016/s0889-5406(98)70205-7.
Haller B, Hofmann N, Klaiber B, Bloching U. Effect of storage media on microleakage of five dentin bonding agents. Dent Mater. 1993;9(3):191-7. doi: 10.1016/0109-5641(93)90119-b.
Gale MS, Darvell BW. Thermal cycling procedures for laboratory testing of dental restorations. J Dent. 1999;27(2):89-99. doi: 10.1016/s0300-5712(98)00037-2.
Al-Kawari HM, Al-Jobair AM. Effect of different preventive agents on bracket shear bond strength: in vitro study. BMC Oral Health. 2014;14(1):28. doi: 10.1186/1472-6831-14-28.
Xiaojun D, Jing L, Xuehua G, Hong R, Youcheng Y, Zhangyu G, et al. Effects of CPP-ACP paste on the shear bond strength of orthodontic brackets. Angle Orthod. 2009;79(5):945-50. doi: 10.2319/101108-573.1.
Brundavanam RK, Poinern GEJ, Fawcett D. Modelling the crystal structure of a 30 nm sized particle based hydroxyapatite powder synthesised under the influence of ultrasound irradiation from X-ray powder diffraction data. Am J Mater Sci. 2013;3(4):84-90. doi: 10.5923/j.materials.20130304.04.
Xue J, Zhang L, Zou L, Liao Y, Li J, Xiao L, et al. High-resolution X-ray microdiffraction analysis of natural teeth. J Synchrotron Radiat. 2008;15(Pt3):235-8. doi: 10.1107/S0909049508003397.
Fundaoğlu Küçükekenci F, Küçükekenci AS, Çakici F. Evaluation of the preventive efficacy of three dentin tubule occlusion methods against discoloration caused by triple-antibiotic paste. Odontology. 2019;107(2):186-9. doi: 10.1007/s10266-018-0385-y.
Kyaw K, Otsuki M, Segarra MS, Hiraishi N, Tagami J. Effect of Calcium-phosphate Desensitizers on Staining Susceptibility of Acid-eroded Enamel. Oper Dent. 2019;44(3):281-8. doi: 10.2341/18-024-L.
Gupta T, Nagaraja S, Mathew S, Narayana IH, Madhu KS, Dinesh K. Effect of desensitization using bioactive glass, hydroxyapatite, and diode laser on the shear bond strength of resin composites measured at different time intervals: An In vitro Study. Contemp Clin Dent. 2017;8(2):244-7. doi: 10.4103/ccd.ccd_155_17.
Niazy A, Abdul-Hamid ES. Synergistic caries inhibitory effect of a rematerializing agent and CO2 laser on human enamel and root dentin. Cairo Dent J. 2009;25(3):415-24.
Friedman S, Liu M, Izawa T, Moynihan M, Dörscher-Kim J, Kim S. Effects of CO2 laser irradiation on pulpal blood flow. Proc Finn Dent Soc. 1992;88(Suppl 1):167-71.
Nair PN, Baltensperger M, Luder HU, Eyrich GK. Observations on pulpal response to carbon dioxide laser drilling of dentine in healthy human third molars. Lasers Med Sci. 2005;19(4):240-7. doi: 10.1007/s10103-004-0317-7.
El Assal DW, Saafan AM, Moustafa DH, Al-Sayed MA. The effect of combining laser and nanohydroxy-apatite on the surface properties of enamel with initial defects. J Clin Exp Dent. 2018 May; 10(5):e425. doi:10.4317/jced.54371
Lin CP, Lee BS, Kok SH, Lan WH, Tseng YC, Lin FH. Treatment of tooth fracture by medium energy CO2 laser and DP-bioactive glass paste: thermal behavior and phase transformation of human tooth enamel and dentin after irradiation by CO2 laser. J Mater Sci Mater Med. 2000;11(6):373-81. doi: 10.1023/a:1008986008510.
Ahrari F, Mohammadipour HS, Hajimomenian L, Fallah-Rastegar A. The effect of diode laser irradiation associated with photoabsorbing agents containing remineralizing materials on microhardness, morphology and chemical structure of early enamel caries. J Clin Exp Dent. 2018;10(10):e955-e962. doi: 10.4317/jced.55059.
Wang Y, Li X, Chang J, Wu C, Deng Y. Effect of tricalcium silicate (Ca(3)SiO(5)) bioactive material on reducing enamel demineralization: An in vitro pH-cycling study. J Dent. 2012;40(12):1119-26. doi: 10.1016/j.jdent.2012.09.006.
Nakagaki S, Iijima M, Endo K, Saito T, Mizoguchi I. Effects of CO2 laser irradiation combined with fluoride application on the demineralization, mechanical properties, structure, and composition of enamel. Dent mater J. 2015;34(3):287-93. doi: 10.4012/dmj.2014-225.
Peric TO, Markovic DL, Radojevic VJ, Heinemann RM, Petrovic BB, Lamovec JS. Influence of pastes containing casein phosphopeptide-amorphous calcium phosphate on surface of demineralized enamel. J Appl Biomater Funct Mater. 2014;12(3):234-9. doi: 10.5301/jabfm.5000194.
Mehta R, Nandlal B, Prashanth S. Comparative evaluation of remineralization potential of casein phosphopeptide-amorphous calcium phosphate and casein phosphopeptide-amorphous calcium phosphate fluoride on artificial enamel white spot lesion: An in vitro light fluorescence study. Indian J Dent Res. 2013;24(6):681-9. doi: 10.4103/0970-9290.127610.
Belcheva A, El Feghali R, Nihtianova T, Parker S. Effect of the carbon dioxide 10,600-nm laser and topical fluoride gel application on enamel microstructure and microhardness after acid challenge: an in vitro study. Lasers Med Sci. 2018;33(5):1009-17. doi: 10.1007/s10103-018-2446-4.
Amaechi BT, Higham SM. In vitro remineralisation of eroded enamel lesions by saliva. J Dent. 2001;29(5):371-6. doi: 10.1016/s0300-5712(01)00026-4.
Fekrazad R, Najafi A, Mahfar R, Namdari M, Azarsina M. Comparison of enamel remineralization potential after application of titanium tetra fluoride and carbon dioxide laser. Laser Ther. 2017;26(2):113-9. doi: 10.5978/islsm.17-OR-9.
Farhadian N, Rezaei-Soufi L, Jamalian SF, Farhadian M, Tamasoki S, Malekshoar M, et al. Effect of CPP-ACP paste with and without CO2 laser irradiation on demineralized enamel microhardness and bracket shear bond strength. Dental Press J Orthod. 2017;22(4):53-60. doi: 10.1590/2177-6709.22.4.053-060.oar.
Khamverdi Z, Kordestani M, Panahandeh N, Naderi F, Kasraei S. Influence of CO2 laser irradiation and CPPACP paste application on demineralized enamel microhardness. J Lasers Med Sci. 2018;9(2):144-8. doi: 10.15171/jlms.2018.27.
Reynolds EC, Cai F, Cochrane NJ, Shen P, Walker GD, Morgan MV, et al. Fluoride and casein phosphopeptide-amorphous calcium phosphate. J Dent Res. 2008;87(4):344-8. doi: 10.1177/154405910808700420.
Velİ I, Akin M, Baka ZM, Uysal T. Effects of different pre-treatment methods on the shear bond strength of orthodontic brackets to demineralized enamel. Acta Odontol Scand. 2016;74(1):7-13. doi: 10.3109/00016357.2014.982703.
- Abstract Viewed: 560 times
- PDF Downloaded: 329 times