Effect of Surface Treatment With Er:YAG and CO2 Lasers on Shear Bond Strength of Polyether Ether Ketone to Composite Resin Veneers
Journal of Lasers in Medical Sciences,
Vol. 11 No. 2 (2020),
15 March 2020
,
Page 153-159
Abstract
Introduction: Polyether ether ketone (PEEK) has low surface energy and high resistance to chemical surface treatments. Therefore, different surface treatments such as laser conditioning should be investigated. There is a gap of information regarding the efficacy of laser irradiation in the surface treatment of PEEK, and the efficacy of several laser types needs to be evaluated for this purpose. This study aimed to assess the effect of surface treatment with erbium-doped yttrium aluminum garnet (Er:YAG) and carbon dioxide (CO2) lasers on shear bond strength (SBS) of PEEK to composite resin veneers.
Methods: In this experimental study, 60 rectangular-shaped PEEK samples (7 x 7 x 2 mm) were used. The samples were mounted in auto-polymerizing acrylic resin in such a way that only one surface measuring 7x7 mm remained exposed. The samples were then randomly divided into 3 groups (n = 20) of control, Er:YAG laser surface treatment (Power = 1.5 W, energy density = 119.42 J/cm2, irradiation time = 20 s) and CO2 laser surface treatment (Power = 4 W, energy density = 159.22 J/cm2, irradiation time = 50 s). The bonding agent and PEEK opaque were applied on the surface of samples and they were veneered with a composite resin using a hollow plastic cylinder with an internal diameter of 4 mm. The SBS was then measured and the data were analyzed using one-way ANOVA, Tukey HSD test and Dunnett’s test at 0.05 level of significance.
Results: The SBS of the 3 groups was significantly different (P < 0.001). The Tukey HSD test revealed that the Er:YAG laser had higher SBS than the CO2 laser group (P < 0.001). The Dunnett’s test showed that both Er:YAG and CO2 laser groups yielded higher SBS than the control group (P < 0.001).
Conclusion: The Er:YAG and CO2 laser treatments can increase the SBS of PEEK to composite resin veneers, although the Er:YAG laser seems to be more effective for this purpose.
- Er-YAG Lasers
- CO2 Lasers
- Polyether ether ketone
- Surface treatment
How to Cite
References
Stawarczyk B, Eichberger M, Uhrenbacher J, Wimmer T, Edelhoff D, Schmidlin PR. Three-unit reinforced polyetheretherketone composite FDPs: influence of fabrication method on load-bearing capacity and failure types. Dent Mater J. 2015;34(1):7-12. doi: 10.4012/dmj.2013-345.
Stawarczyk B, Beuer F, Wimmer T, Jahn D, Sener B, Roos M, et al. Polyetheretherketone-a suitable material for fixed dental prostheses? J Biomed Mater Res B Appl Biomater. 2013;101(7):1209-16. doi: 10.1002/jbm.b.32932.
Najeeb S, Zafar MS, Khurshid Z, Siddiqui F. Applications of polyetheretherketone (PEEK) in the oral implantology and prosthodontics. J Prosthodont Res. 2016;60(1):12-9. doi: 10.1016/j.jpor.2015.10.001.
Fuhrmann G, Steiner M, Freitag-Wolf S, Kern M. Resin bonding to three types of polyaryletherketones (PAEKs) - Durability and influence of surface conditioning. Dent Mater. 2014;30(3):357-63. doi: 10.1016/j.dental.2013.12.008.
Zeighami S, Mirmohammadrezaei S, Safi M, Falahchai SM. The Effect of Core and Veneering Design on the Optical Properties of Polyether Ether Ketone. Eur J Prosthodont Restor Dent. 2017;25(4):201-8. doi: 10.1922/ejprd_01720zeighami08.
Stawarczyk B, Bähr N, Beuer F, Wimmer T, Eichberger M, Gernet W, et al. Influence of plasma pretreatment on shear bond strength of self-adhesive resin cements to polyetheretherketone. Clin Oral Investig. 2014;18(1):163-70. doi: 10.1007/s00784-013-0966-7.
Kern M, Lehmann F. Influence of surface conditioning on bonding to polyetheretherketon (PEEK). Dent Mater. 2012;28(12):1280-3. doi: 10.1016/j.dental.2012.09.010.
Rosentritt M, Preis V, Behr M, Sereno N, Kolbeck C. Shear bond strength between veneering composite and PEEK after different surface modifications. Clin Oral Investig. 2015;19(3):739-44. doi: 10.1007/s00784-014-1294-2.
Stawarczyk B, Jordan P, Schmidlin PR, Roos M, Eichberger M, Gernet W, et al. PEEK surface treatment effects on tensile bond strength to veneering resins. J Prosthet Dent. 2014;112(5):1278-88. doi: 10.1016/j.prosdent.2014.05.014.
Schmidlin PR, Stawarczyk B, Wieland M, Attin T, Hämmerle CH, Fischer J. Effect of different surface pre-treatments and luting materials on shear bond strength to PEEK. Dent Mater. 2010;26(6):553-9. doi: 10.1016/j.dental.2010.02.003.
Stawarczyk B, Keul C, Beuer F, Roos M, Schmidlin PR. Tensile bond strength of veneering resins to PEEK: impact of different adhesives. Dent Mater J. 2013;32(3):441-8. doi: 10.4012/dmj.2013-011.
Keul C, Liebermann A, Schmidlin PR, Roos M, Sener B, Stawarczyk B. Influence of PEEK surface modification on surface properties and bond strength to veneering resin composites. J Adhes Dent. 2014;16(4):383-92. doi: 10.3290/j.jad.a32570.
Hallmann L, Mehl A, Sereno N, Hämmerle CHF. The improvement of adhesive properties of PEEK through different pre-treatments. Appl Surf Sci. 2012;258(18):7213-8. doi: 10.1016/j.apsusc.2012.04.040.
Caglar I, Ates SM, Yesil Duymus Z. An in vitro evaluation of the effect of various adhesives and surface treatments on bond strength of resin cement to polyetheretherketone. J Prosthodont. 2019;28(1):e342-e349. doi: 10.1111/jopr.12791.
Henriques B, Fabris D, Mesquita-Guimarães J, Sousa AC, Hammes N, Souza JCM, et al. Influence of laser structuring of PEEK, PEEK-GF30 and PEEK-CF30 surfaces on the shear bond strength to a resin cement. J Mech Behav Biomed Mater. 2018;84:225-34. doi: 10.1016/j.jmbbm.2018.05.008.
Uhrenbacher J, Schmidlin PR, Keul C, Eichberger M, Roos M, Gernet W, et al. The effect of surface modification on the retention strength of polyetheretherketone crowns adhesively bonded to dentin abutments. J Prosthet Dent. 2014;112(6):1489-97. doi: 10.1016/j.prosdent.2014.05.010.
Zhou L, Qian Y, Zhu Y, Liu H, Gan K, Guo J. The effect of different surface treatments on the bond strength of PEEK composite materials. Dent Mater. 2014;30(8):e209-e15. doi: 10.1016/j.dental.2014.03.011.
Silthampitag P, Chaijareenont P, Tattakorn K, Banjongprasert C, Takahashi H, Arksornnukit M. Effect of surface pretreatments on resin composite bonding to PEEK. Dent Mater J. 2016;35(4):668-74. doi: 10.4012/dmj.2015-349.
Sproesser O, Schmidlin PR, Uhrenbacher J, Roos M, Gernet W, Stawarczyk B. Effect of sulfuric acid etching of polyetheretherketone on the shear bond strength to resin cements. J Adhes Dent. 2014;16(5):465-72. doi: 10.3290/j.jad.a32806.
Briem D, Strametz S, Schröder K, Meenen NM, Lehmann W, Linhart W, et al. Response of primary fibroblasts and osteoblasts to plasma treated polyetheretherketone (PEEK) surfaces. J Mater Sci Mater Med. 2005;16(7):671-7. doi: 10.1007/s10856-005-2539-z.
Foerch R, Izawa J, Spears G. A comparative study of the effects of remote nitrogen plasma, remote oxygen plasma, and corona discharge treatments on the surface properties of polyethylene. J Adhes Sci Technol. 1991;5(7):549-64. doi: 10.1163/156856191X00747.
Wilson A, Jones I, Salamat-Zadeh F, Watts JF. Laser surface modification of poly (etheretherketone) to enhance surface free energy, wettability and adhesion. Int J Adhes Adhes. 2015;62:69-77. doi: 10.1016/j.ijadhadh.2015.06.005.
Tavakoli SM. Surface preparation: power beams clean up. Assembly Autom. 1994;14(4):36-8. doi: 10.1108/EUM0000000004219.
Hartwig A, Hunnekuhl J, Vitr G, Dieckhoff S, Vohwinkel F, Hennemann OD. Influence of CO2 laser radiation on the surface properties of poly (ether ether ketone). J Appl Polym Sci. 1997;64(6):1091-6. doi: 10.1002/(SICI)1097-4628(19970509)64:6<1091::AID-APP8>3.0.CO;2-G.
Zhang C, Zhang G, Ji V, Liao H, Costil S, Coddet C. Microstructure and mechanical properties of flame-sprayed PEEK coating remelted by laser process. Prog Org Coat. 2009;66(3):248-53. doi: 10.1016/j.porgcoat.2009.08.002.
Soveja A, Sallamand P, Liao H, Costil S. Improvement of flame spraying PEEK coating characteristics using lasers. J Mater Process Tech. 2011;211(1):12-23. doi: 10.1016/j.jmatprotec.2010.08.002
Garcia-Alonso D, Serres N, Demian C, Costil S, Langlade C, Coddet C. Pre-/during-/post-laser processes to enhance the adhesion and mechanical properties of thermal-sprayed coatings with a reduced environmental impact. J Therm Spray Techn. 2011;20(4):719-35. doi: 10.1007/s11666-011-9629-x.
Tsuka H, Morita K, Kato K, Kimura H, Abekura H, Hirata I, et al. Effect of laser groove treatment on shear bond strength of resin-based luting agent to polyetheretherketone (PEEK). J Prosthodont Res. 2019;63(1):52-7. doi: 10.1016/j.jpor.2018.08.001.
Ates SM, Caglar I, Yesil Duymus Z. The effect of different surface pretreatments on the bond strength of veneering resin to polyetheretherketone. J Adhes Sci Technol. 2018;32(20):2220-31. doi: 10.1080/01694243.2018.1468534.
Akhavan Zanjani V, Ahmadi H, Nateghifard A, Ghasemi A, Torabzadeh H, Abdoh Tabrizi M, et al. Effect of different laser surface treatment on microshear bond strength between zirconia ceramic and resin cement. J Investig Clin Dent. 2015;6(4):294-300. doi: 10.1111/jicd.12105.
Akın H, Ozkurt Z, Kırmalı O, Kazazoglu E, Ozdemir AK. Shear bond strength of resin cement to zirconia ceramic after aluminum oxide sandblasting and various laser treatments. Photomed Laser Surg. 2011;29(12):797-802. doi: 10.1089/pho.2011.3039.
Aboushelib MN, Kleverlaan CJ, Feilzer AJ. Microtensile bond strength of different components of core veneered all-ceramic restorations. Part 3: double veneer technique. J Prosthodont. 2008;17(1):9-13. doi: 10.1111/j.1532-849X.2007.00244.x.
Aboushelib MN, de Jager N, Kleverlaan CJ, Feilzer AJ. Microtensile bond strength of different components of core veneered all-ceramic restorations. Dent Mater. 2005;21(10):984-91. doi: 10.1016/j.dental.2005.03.013.
Della Bona A, van Noort R. Shear vs. tensile bond strength of resin composite bonded to ceramic. J Dent Res. 1995;74(9):1591-6. doi: 10.1177/00220345950740091401.
Braga RR, Meira JB, Boaro LC, Xavier TA. Adhesion to tooth structure: a critical review of “macro” test methods. Dent Mater. 2010;26(2):e38-e49. doi: 10.1016/j.dental.2009.11.150.
Shimada Y, Yamaguchi S, Tagami J. Micro-shear bond strength of dual-cured resin cement to glass ceramics. Dent Mater. 2002;18(5):380-8. doi: 10.1016/S0109-5641(01)00054-9.
Ereifej N, Rodrigues FP, Silikas N, Watts DC. Experimental and FE shear-bonding strength at core/veneer interfaces in bilayered ceramics. Dent Mater. 2011;27(6):590-7. doi: 10.1016/j.dental.2011.03.001.
Watanabe I, Nakabayashi N. Measurement methods for adhesion to dentine: the current status in Japan. J Dent. 1994;22(2):67-72. doi: 10.1016/0300-5712(94)90001-9.
Cardoso PE, Braga RR, Carrilho MR. Evaluation of micro-tensile, shear and tensile tests determining the bond strength of three adhesive systems. Dent Mater. 1998;14(6):394-8. doi: 10.1016/s0300-5712(99)00012-3.
Shiu P, De Souza-Zaroni WC, Eduardo Cde P, Youssef MN. Effect of feldspathic ceramic surface treatments on bond strength to resin cement. Photomed Laser Surg. 2007;25(4):291-6. doi: 10.1089/pho.2007.2018.
Subaşı MG, İnan Ö. Evaluation of the topographical surface changes and roughness of zirconia after different surface treatments. Lasers Med Sci. 2012;27(4):735-42. doi: 10.1007/s10103-011-0965-3.
Spohr AM, Borges GA, Júnior LH, Mota EG, Oshima HM. Surface modification of In-Ceram Zirconia ceramic by Nd:YAG laser, Rocatec system, or aluminum oxide sandblasting and its bond strength to a resin cement. Photomed Laser Surg. 2008;26(3):203-8. doi: 10.1089/pho.2007.2130.
Akyil MS, Uzun IH, Bayindir F. Bond strength of resin cement to yttrium-stabilized tetragonal zirconia ceramic treated with air abrasion, silica coating, and laser irradiation. Photomed Laser Surg. 2010;28(6):801-8. doi: 10.1089/pho.2009.2697.
Korkmaz Y, Ozel E, Attar N, Bicer CO, Firatli E. Microleakage and scanning electron microscopy evaluation of all-in-one self-etch adhesives and their respective nanocomposites prepared by erbium:yttrium–aluminum–garnet laser and bur. Lasers Med Sci. 2010;25(4):493-502. doi: 10.1007/s10103-009-0672-5.
Chousterman M, Heysselaer D, Dridi S, Bayet F, Misset B, Lamard L, et al. Effect of acid etching duration on tensile bond strength of composite resin bonded to erbium:yttrium-aluminium-garnet laser-prepared dentine. Preliminary study. Lasers Med Sci. 2010;25(6):855-9. doi: 10.1007/s10103-009-0719-7.
de Oliveira Ortolan AS, Torres CP, Gomes-Silva JM, de Menezes-Oliveira MA, Pécora JD, Palma-Dibb RG, et al. Effect of erbium-doped yttrium aluminium garnet laser parameters on ablation capacity and morphology of primary dentin. Photomed Laser Surg. 2009;27(6):885-90. doi: 10.1089/pho.2008.2358.
Cavalcanti AN, Pilecki P, Foxton RM, Watson TF, Oliveira MT, Gianinni M, et al. Evaluation of the surface roughness and morphologic features of Y-TZP ceramics after different surface treatments. Photomed Laser Surg. 2009;27(3):473-9. doi: 10.1089/pho.2008.2293.
International Organization for Standardization. ISO10477. Dentistry polymer-based crown and bridge materials. Geneva; 2004.
Thurmond JW, Barkmeier WW, Wilwerding TM. Effect of porcelain surface treatments on bond strengths of composite resin bonded to porcelain. J Prosthet Dent. 1994;72(4):355-9. doi: 10.1016/0022-3913(94)90553-3.
Piwowarczyk A, Lauer H, Sorensen JA. The shear bond strength between luting cements and zirconia ceramics after two pre-treatments. Oper Dent. 2005;30(3):382-8.
Srinivasan V, Smrtic MA, Babu SV. Excimer laser etching of polymers. J Appl Phys. 1986;59(11):3861-7. doi: 10.1063/1.336728.
Srinivasan R. Interaction of laser radiation with organic polymers. In Laser Ablation 1994 (pp. 107-133). Springer, Berlin, Heidelberg. doi: 10.1007/978-3-642-78720-1_5.
Ozdemir M, Sadikoglu H. A new and emerging technology: Laser-induced surface modification of polymers. Trends Food Sci Tech. 1998;9(4):159-67. doi: 10.1016/S0924-2244(98)00035-1.
Lukac M, Primc NM, Pirnat S. Quantum square pulse Er:YAG lasers for fast and precise hard dental tissue preparation. Journal of Laser and Health Academy. 2012;2012(1):14-21.
Kurklu D, Yanikoglu N. SEM evaluation of surface morphologic analysis of restorative materials with three laser treatment. J Dent Lasers. 2013;7(1):9-16. doi: 10.4103/0976-2868.118414.
- Abstract Viewed: 776 times
- PDF Downloaded: 453 times