Effect of Nd: YAG laser irradiation and Mechanical force on cultured human osteoblasts.
Journal of Lasers in Medical Sciences,
Vol. 11 No. 2 (2020),
15 March 2020
,
Page 138-143
Abstract
Background: In recent years, laser irradiation in the NIR (Near infrared ray) area has been reported to promote bone healing. There are also reports that laser irradiation accelerates orthodontic tooth movement. In this study, we investigated the effect of NIR laser irradiation and mechanical stimulation on osteoblasts.
Methods: We seeded osteoblast-like cells and laser irradiation was performed 24 hours after cell seeding. In addition, a control group not performing anything, a group performing only neodymium · doped (Nd): YAG laser irradiation, a group performing only centrifugal loading, and a group using both Nd: YAG laser irradiation and centrifugal force loading were set, and after 24 hours and after 48 hours, cells were collected and Quantitative real-time PCR was performed.
Results: At 24 hours after laser irradiation, gene expression of Alkaline Phosphatase (ALP), Receptor activator of NF-κB ligand (RANKL) and Osteoprotegerin (OPG) was significantly higher in the 2.0 w group than in the control group. In addition, the RANKL / OPG ratio was higher in the 2.0 w group than in the control group. Also, in the group using laser irradiation and centrifugal load in combination 24 hours after laser irradiation, ALP and OPG showed significantly higher values than those with centrifugal load only group. Furthermore, the RANKL / OPG ratio also showed high values.
Conclusion: These results suggest that osteoblast-like cells activate genes related to bone metabolism by combining mechanical stimulation and laser irradiation. This helps to elucidate the influence of laser irradiation during tooth movement.
- Nd
- YAG laser
- Bone metabolism
- Osteoblast
- Mechanical Force
How to Cite
References
Alzoman HA, Diab HM. Effect of gallium aluminium arsenide diode laser therapy on Porphyromonas gingivalis in chronic periodontitis: a randomized controlled trial. Int J Dent Hyg. 2016;14(4):261-266. doi: 10.1111/idh.12169.
Gündoğar H, Şenyurt SZ, Erciyas K, Yalım M, Üstün K. The effect of low-level laser therapy on non-surgical periodontal treatment: a randomized controlled, single-blind, split-mouth clinical trial. Lasers Med Sci. 2016;31(9):1767-1773. doi: 10.1007/s10103-016-2047-z.
García-Delaney C, Abad-Sánchez D, Arnabat-Domínguez J, Valmaseda-Castellón E, Gay-Escoda C. Evaluation of the effectiveness of the photobiomodulation in the treatment of dentin hypersensitivity after basic therapy. A randomized clinical trial. J Clin Exp Dent. 2017;9(5):e694-e702. doi: 10.4317/jced.53635.
Femiano F, Femiano R, Lanza A, Lanza M, Perillo L. Effectiveness on oral pain of 808-nm diode laser used prior to composite restoration for symptomatic non-carious cervical lesions unresponsive to desensitizing agents. Lasers Med Sci. 2017;32(1):67-71. doi: 10.1007/s10103-016-2087-4.
Sayed N, Murugavel C, Gnanam A. Management of Temporomandibular Disorders with Low Level Laser Therapy. J Maxillofac Oral Surg. 2014;13(4):444-50. doi: 10.1007/s12663-013-0544-1.
Ninomiya T, Miyamoto Y, Ito T, Yamashita A, Wakita M, Nishisaka T. High-intensity pulsed laser irradiation accelerates bone formation in metaphyseal trabecular bone in rat femur. J Bone Miner Metab. 2003;21(2):67-73. doi: 10.1007/s007740300011.
Weber JB, Pinheiro AL, de Oliveira MG, Oliveira FA, Ramalho LM. Laser therapy improves healing of bone defects submitted to autologous bone graft. Photomed Laser Surg. 2006;24(1):38-44. doi: 10.1089/pho.2006.24.38.
Son J, Kim YB, Ge Z, Choi SH, Kim G. Bone healing effects of diode laser (808 nm) on a rat tibial fracture model. In Vivo. 2012;26(4):703-9.
Pinheiro AL, Soares LG, Marques AM, Cangussú MC, Pacheco MT, Silveira L Jr. Biochemical changes on the repair of surgical bone defects grafted with biphasic synthetic micro-granular HA + β-tricalcium phosphate induced by laser and LED phototherapies and assessed by Raman spectroscopy. Lasers Med Sci. 2017;32(3):663-72. doi: 10.1007/s10103-017-2165-2.
Chellini F, Sassoli C, Nosi D, Deledda C, Tonelli P, Zecchi-Orlandini S, et al. Low pulse energy Nd:YAG laser irradiation exerts a biostimulative effect on different cells of the oral microenvironment: "an in vitro study". Lasers Surg Med. 2010;42(6):527-39. doi: 10.1002/lsm.20861.
Naderi MS, Razzaghi M, Esmaeeli Djavid G, Hajebrahimi Z. A Comparative Study of 660 nm Low-Level Laser and Light Emitted Diode in Proliferative Effects of Fibroblast Cells. J Lasers Med Sci. 2017;8(Suppl 1):S46-S50. doi: 10.15171/jlms.2017.s9.
Kunimatsu R, Gunji H, Tsuka Y, Yoshimi Y, Awada T, Sumi K, et al. Effects of high-frequency near-infrared diode laser irradiation on the proliferation and migration of mouse calvarial osteoblasts. Lasers Med Sci. 2018;33(5):959-966. doi: 10.1007/s10103-017-2426-0.
Doshi-Mehta G, Bhad-Patil WA. Efficacy of low-intensity laser therapy in reducing treatment time and orthodontic pain: a clinical investigation. Am J Orthod Dentofacial Orthop. 2012;141(3):289-297. doi: 10.1016/j.ajodo.2011.09.009.
Qamruddin I, Alam MK, Mahroof V, Fida M, Khamis MF, Husein A. Effects of low-level laser irradiation on the rate of orthodontic tooth movement and associated pain with self-ligating brackets. Am J Orthod Dentofacial Orthop. 2017;152(5):622-630. doi: 10.1016/j.ajodo.2017.03.023.
Kawasaki K, Shimizu N. Effects of low-energy laser irradiation on bone remodeling during experimental tooth movement in rats. Lasers Surg Med. 2000;26(3):282-91. doi: 10.1002/(sici)1096-9101(2000)26:3<282::aid-lsm6>3.0.co;2-x.
Cruz DR, Kohara EK, Ribeiro MS, Wetter NU . Effects of low-intensity laser therapy on the orthodontic movement velocity of human teeth: a preliminary study. Lasers Surg Med. 2004;35(2):117-120. doi: 10.1002/lsm.20076.
Genc G, Kocadereli I, Tasar F, Kilinc K, El S, Sarkarati B. Effect of low-level laser therapy (LLLT) on orthodontic tooth movement. Lasers Med Sci. 2013;28(1):41-7. doi: 10.1007/s10103-012-1059-6.
Tsuka Y, Fujita T, Shirakura M, Kunimatsu R, Su SC, Fujii E, et al. Effects of Neodymium-Doped Yttrium Aluminium Garnet (Nd:YAG) Laser Irradiation on Bone Metabolism During Tooth Movement. J Lasers Med Sci. 2016;7(1):40-4. doi: 10.15171/jlms.2016.09.
Redlich M, Asher Roos H, Reichenberg E, Zaks B, Mussig D, Baumert U, et al. Expression of tropoelastin in human periodontal ligament fibroblasts after simulation of orthodontic force. Arch Oral Biol. 2004;49(2):119-24. doi: 10.1016/j.archoralbio.2003.08.002.
Tunér J, Hode L . The New Laser Therapy Handbook: A guide for research scientists, doctors, dentists, veterinarians and other interested parties within the medical field. Grängesberg : Prima Books; 2010.
Hamblin MR, De Sousa M, Agrawal T, editors. Handbook of Low-Level Laser Therapy. Singapore: Pan stanford Publishing Pte Ltd; 2017.
Tsuka Y, Kunimatsu R, Gunji H, Nakajima K, Kimura A, Hiraki T, et al. Effects of Nd:YAG low-level laser irradiation on cultured human osteoblasts migration and ATP production: in vitro study. Lasers Med Sci. 2019;34(1):55-60. doi: 10.1007/s10103-018-2586-6.
de Melo Conti C, Suzuki H, Garcez AS, Suzuki SS . Effects of Photobiomodulation on Root Resorption Induced by Orthodontic Tooth Movement and RANKL/OPG Expression in Rats. Photochem Photobiol. 2019;95(5):1249-57. doi: 10.1111/php.13107.
Oliveira FA, Matos AA, Matsuda SS, Buzalaf MA, Bagnato VS, Machado MA, et al. Low level laser therapy modulates viability, alkaline phosphatase and matrix metalloproteinase-2 activities of osteoblasts. J Photochem Photobiol B. 2017;169:35-40. doi: 10.1016/j.jphotobiol.2017.02.020.
Alazzawi MMJ, Husein A, Alam MK, Hassan R, Shaari R, Azlina A, et al. Effect of low level laser and low intensity pulsed ultrasound therapy on bone remodeling during orthodontic tooth movement in rats. Prog Orthod. 2018;19(1):10. doi: 10.1186/s40510-018-0208-2.
Tanaka H, Mine T, Ogasa H, Taguchi T, Liang CT. Expression of RANKL/OPG during bone remodeling in Vivo. Biochem Biophys Res Commun. 2011;411(4):690-4. doi: 10.1016/j.bbrc.2011.07.001.
Usumez A, Cengiz B, Oztuzcu S, Demir T, Aras MH, Gutknecht N . Effects of laser irradiation at different wavelengths (660, 810, 980, and 1,064 nm) on mucositis in an animal model of wound healing. Lasers Med Sci. 2014;29(6):1807-13. doi: 10.1007/s10103-013-1336-z.
Naito K, Matsuzaka K, Ishigami K, Inoue T. Mechanical force promotes proliferation and early differentiation of bone marrow derived osteoblast-like cells in Vitro. Oral Med Pathol. 2009;13(4):143-9. doi: 10.3353/omp.13.143.
Okamoto A, Ohnishi T, Bandow K, Kakimoto K, Chiba N, Maeda A, et al. Reduction of orthodontic tooth movement by experimentally induced periodontal inflammation in mice. Eur J Oral Sci. 2009;117(3):238-47. doi: 10.1111/j.1600-0722.2009.00625.x.
Naruse S, Matsuzaka K, Kokubu E. Expressions of RANKL and OPG mRNA on Rat Periodontal Ligament Cells Following Heavy Mechnical Stress. Journal of Japan Association of Dental Traumatology. 2009;5(1):10-17. [in Japanese].
- Abstract Viewed: 568 times
- PDF Downloaded: 380 times