Short-term Effects of Transcranial Near-Infrared Photobiomodulation on Motor Performance in Healthy Human Subjects: An Experimental Single-Blind Randomized Clinical Trial
Journal of Lasers in Medical Sciences,
Vol. 10 No. 4 (2019),
1 October 2019
,
Page 317-323
Abstract
Introduction: Transcranial near-infrared photobiomodulation (NIR-PBM) is a new noninvasive procedure which transcranially applies a near-infrared wavelength to the scalp with a laser or a light-emitting diode (LED) source. Improvement in the neurological or psychological symptoms has been reported following light irradiation. However, to our knowledge, there is no study to investigate the effects of transcranial NIR-PBM on motor performance directly. Therefore, the objective of this study was to investigate the short-term effects of transcranial NIR-PBM on motor performance in healthy human subjects.
Methods: In this experimental single-blind randomized clinical trial study, 56 right-handed healthy participants, whose ages ranged from 18 to 30, were randomly assigned to (1) Real transcranial NIR-PBMC3 group (n=14), (2) Sham transcranial NIR-PBMC3 group (n=14), (3) Real transcranial NIR-PBMC4 group (n=14), and (4) Sham transcranial NIR-PBMC4 group (n=14). We applied the 808 nm laser with irradiation energy density of 60 J/cm2 and power density of 200 mw/cm2 to the C3 or C4 points of the scalp. The number of finger taps as an indicator of motor performance was assessed by the finger-tapping test (FTT) before and after irradiation of transcranial NIR-PBM on the corresponding points of the scalp for 5 minutes.
Results: The results showed that the number of finger taps in both right and left hands following the use of transcranial NIR-PBM in the real transcranial NIR-PBMC3 group significantly increased (P < 0.05).
Conclusion: We concluded that using transcranial NIR-PBM with a laser source on C3 point of the motor cortex in right-handed healthy people can increase the number of finger taps in both hands as an indicator of motor performance improvement.
- Transcranial
- Cytochrome-c oxidase
- Laser
- Motor cortex.
How to Cite
References
Rojas JC, Gonzalez-Lima F. Low-level light therapy of the eye and brain. Eye Brain. 2011;3:49-67. doi:10.2147/EB.S21391
Rojas JC, Gonzalez-Lima F. Neurological and psychological applications of transcranial lasers and LEDs. Biochem Pharmacol. 2013;86(4):447-57. doi:10.1016/j.bcp.2013.06.012.
Salgado S, Parreira R, Ceci L, de Oliveira L, Zangaro R. Transcranial light emitting diode therapy (TCLT) and its effects on neurological disorders. J Bioeng Biomed Sci. 2015;5(1):1-5. doi:10.4172/2155-9538.1000144
Wan S, Parrish JA, Anderson R, Madden M. Transmittance of nonionizing radiation in human tissues. Photochem Photobiol. 1981;34(6):679-81. doi:10.1111/j.1751-1097. 1981.tb09063.x
Jagdeo JR, Adams LE, Brody NI, Siegel DM. Transcranial red and near-infrared light transmission in a cadaveric model. PloS one. 2012;7(10):e47460. doi:10.1371/journal.pone.0047460
Naeser MA, Hamblin MR. Potential for transcranial laser or LED therapy to treat stroke, traumatic brain injury, and neurodegenerative disease. Photomed Laser Surg. 2011;29(7):443-446. doi:10.1089/pho.2011.9908.
Wong-Riley MT, Bai X, Buchmann E, Whelan HT. Light-emitting diode treatment reverses the effect of TTX on cytochrome oxidase in neurons. Neuroreport. 2001;12(14):3033-7.
Wong-Riley MT. Cytochrome oxidase: an endogenous metabolic marker for neuronal activity. Trends neurosci. 1989;12(3):94-101. doi:10.1016/0166-2236(89)90165-3
Uozumi Y, Nawashiro H, Sato S, Kawauchi S, Shima K, Kikuchi M. Targeted increase in cerebral blood flow by transcranial near‐infrared laser irradiation. Lasers Surg Med. 2010;42(6):566-76. doi:10.1002/lsm.20938
Hu W-P, Wang J-J, Yu C-L, Lan C-CE, Chen G-S, Yu H-S. Helium–neon laser irradiation stimulates cell proliferation through photostimulatory effects in mitochondria. J Invest Dermatol. 2007;127(8):2048-57. doi:10.1038/sj.jid.5700826.
Duan R, Zhu L, Liu TCY, Li Y, Liu J, Jiao J, et al. Light emitting diode irradiation protect against the amyloid beta 25–35 induced apoptosis of PC12 cell in vitro. Lasers Surg Med. 2003;33(3):199-203. doi:10.1002/lsm.10216
Yang L, Tucker D, Dong Y, Wu C, Lu Y, Li Y, et al. Photobiomodulation therapy promotes neurogenesis by improving post-stroke local microenvironment and stimulating neuroprogenitor cells. Exp Neurol. 2018; 299:86-96. doi:10.1016/j.expneurol.2017.10.013.
Salehpour F, Farajdokht F, Cassano P, Sadigh-Eteghad S, Erfani M, Hamblin MR, et al. Near-infrared photobiomodulation combined with coenzyme Q10 for depression in a mouse model of restraint stress: reduction in oxidative stress, neuroinflammation, and apoptosis. Brain Res Bull. 2019;144:213-22. doi:10.1016/j.brainresbull.2018.10.010
Quirk BJ, Torbey M, Buchmann E, Verma S, Whelan HT. Near-infrared photobiomodulation in an animal model of traumatic brain injury: improvements at the behavioral and biochemical levels. Photomed Laser Surg. 2012;30(9):523-9. doi:10.1089/pho.2012.3261
Naeser MA, Zafonte R, Krengel MH, Martin PI, Frazier J, Hamblin MR, et al. Significant improvements in cognitive performance post-transcranial, red/near-infrared light-emitting diode treatments in chronic, mild traumatic brain injury: open-protocol study. J Neurotrauma. 2014;31(11):1008-17. doi:10.1089/neu.2013.3244
Salgado AS, Zângaro RA, Parreira RB, Kerppers II. The effects of transcranial LED therapy (TCLT) on cerebral blood flow in the elderly women. Lasers Med sci. 2015;30(1):339-46. doi:10.1007/s10103-014-1669-2.
de Sousa MVP, Ferraresi C, Kawakubo M, Kaippert B, Yoshimura EM, Hamblin MR. Transcranial low-level laser therapy (810 nm) temporarily inhibits peripheral nociception: photoneuromodulation of glutamate receptors, prostatic acid phophatase, and adenosine triphosphate. Neurophotonics. 2016;3(1):015003. doi:10.1117/1.NPh.3.1.015003.
Salehpour F, Mahmoudi J, Kamari F, Sadigh-Eteghad S, Rasta SH, Hamblin MR. Brain Photobiomodulation Therapy: a Narrative Review. Mol Neurobiol. 2018;55(8):6601-6636. doi: 10.1007/s12035-017-0852-4.
Vandewalle G, Maquet P, Dijk D-J. Light as a modulator of cognitive brain function. Trends Cogn Sci. 2009;13(10):429-38. doi:10.1016/j.tics.2009.07.004
Barrett D, Gonzalez-Lima F. Transcranial infrared laser stimulation produces beneficial cognitive and emotional effects in humans. Neuroscience. 2013;230:13-23. doi:10.1016/j.neuroscience.2012.11.016
Lewin JS, Friedman L, Wu D, Miller DA, Thompson LA, Klein SK, et al. Cortical localization of human sustained attention: detection with functional MR using a visual vigilance paradigm. J Comput Assist Tomogr. 1996;20(5):695-701.
Rojas JC, Bruchey AK, Gonzalez-Lima F. Low-level light therapy improves cortical metabolic capacity and memory retention. J Alzheimer's Dis. 2012;32(3):741-52. doi:10.3233/JAD-2012-120817.
Salehpour F, Farajdokht F, Erfani M, Sadigh-Eteghad S, Shotorbani SS, Hamblin MR, et al. Transcranial near-infrared photobiomodulation attenuates memory impairment and hippocampal oxidative stress in sleep-deprived mice. Brain Res. 2018;1682:36-43. doi: 10.1016/j.brainres.2017.12.040.
Wang X, Tian F, Reddy DD, Nalawade SS, Barrett DW, Gonzalez-Lima F, et al. Up-regulation of cerebral cytochrome-c-oxidase and hemodynamics by transcranial infrared laser stimulation: a broadband near-infrared spectroscopy study. J Cereb Blood Flow Metab. 2017;37(12):3789-802. doi:10.1177/0271678X17691783.
Sabouri Moghadam H, Nazari M A, Jahan A, Mahmoudi J, Moghadam Salimi M. Beneficial Effects of Transcranial Light Emitting Diode (LED) Therapy on Attentional Performance: An Experimental Design, Iran Red Crescent Med J. 2017; 19(5): e44513. doi: 10.5812/ircmj.44513.
Jahan A, Nazari MA, Mahmoudi J, Salehpour F, Salimi MM. Transcranial near-infrared photobiomodulation could modulate brain electrophysiological features and attentional performance in healthy young adults. Lasers Med Sci. 2019;1-8. doi:10.1007/s10103-018-02710-3.
Lee HI, Park JH, Park MY, Kim NG, Park K-J, Choi BT, et al. Pre-conditioning with transcranial low-level light therapy reduces neuroinflammation and protects blood-brain barrier after focal cerebral ischemia in mice. Restor Neurol Neurosci. 2016;34(2):201-14. doi:10.3233/RNN-150559
Moro C, Torres N, El Massri N, Ratel D, Johnstone DM, Stone J, et al. Photobiomodulation preserves behaviour and midbrain dopaminergic cells from MPTP toxicity: evidence from two mouse strains. BMC Neurosci. 2013;14(1):40. doi:10.1186/1471-2202-14-40.
Xuan W, Vatansever F, Huang L, Wu Q, Xuan Y, Dai T, et al. Transcranial low-level laser therapy improves neurological performance in traumatic brain injury in mice: effect of treatment repetition regimen. PloS one. 2013;8(1):e53454. doi:10.1371/journal.pone.0053454
Lapchak P, Salgado K, Chao C, Zivin J. Transcranial near-infrared light therapy improves motor function following embolic strokes in rabbits: an extended therapeutic window study using continuous and pulse frequency delivery modes. Neuroscience. 2007;148(4):907-14. doi:10.1016/j.neuroscience.2007.07.002.
Oron A, Oron U, Streeter J, Taboada LD, Alexandrovich A, Trembovler V, et al. Low-level laser therapy applied transcranially to mice following traumatic brain injury significantly reduces long-term neurological deficits. J Neurotrauma. 2007;24(4):651-6. doi:10.1089/neu.2006.0198.
Lapchak PA, Wei J, Zivin JA. Transcranial infrared laser therapy improves clinical rating scores after embolic strokes in rabbits. Stroke. 2004;35(8):1985-8. doi:10.1161/01.STR.0000131808.69640.b7
Chapman LJ, Chapman JP. The measurement of handedness. Brain Cogn. 1987;6(2):175-83. doi:10.1016/0278-2626(87)90118-7.
Alipour A. The reliability and validity of chapman’s handedness inventory in junior high school students. Dev Psychol J. 2006;2(7):197-205.
Cavill S, Bryden P. Development of handedness: comparison of questionnaire and performance-based measures of preference. Brain Cogn. 2003;53(2):149-51. doi:10.1016/S0278-2626(03)00098-8.
Elias LJ, Saucier DM. Neuropsychology: Clinical and experimental foundations. Bacon: Pearson; 2006. Pagination
Saimpont A, Mercier C, Malouin F, Guillot A, Collet C, Doyon J, et al. Anodal transcranial direct current stimulation enhances the effects of motor imagery training in a finger tapping task. Eur J Neurosci. 2016;43(1):113-9. doi:10.1111/ejn.13122
Schiffer F, Johnston AL, Ravichandran C, Polcari A, Teicher MH, Webb RH, et al. Psychological benefits 2 and 4 weeks after a single treatment with near infrared light to the forehead: a pilot study of 10 patients with major depression and anxiety. Behav Brain Funct. 2009;5(1):46. doi:10.1186/1744-9081-5-46.
Bornstein RA, Baker G, Douglass A. Short-term retest reliability of the Halstead-Reitan Battery in a normal sample. J Nerv Ment Dis. 1987;175(4):229-32. doi:10.1097/00005053-198704000-00007.
Strauss E, Sherman EM, Spreen O. A compendium of neuropsychological tests: Administration, norms, and commentary: Oxford University Press; 2006.
De Gennaro L, Cristiani R, Bertini M, Curcio G, Ferrara M, Fratello F, et al. Handedness is mainly associated with an asymmetry of corticospinal excitability and not of transcallosal inhibition. Clin Neurophysiol. 2004;115(6):1305-12. doi:10.1016/j.clinph.2004.01.014.
Serrien DJ, Ivry RB, Swinnen SP. Dynamics of hemispheric specialization and integration in the context of motor control. Nat Rev Neurosci. 2006;7(2):160. doi:10.1038/nrn1849.
Kawashima R, Inoue K, Sato K, Fukuda H. Functional asymmetry of cortical motor control in left-handed subjects. Neuroreport. 1997;8(7):1729-32.
Herron J, Galin D, Johnstone J, Ornstein RE. Cerebral specialization, writing posture, and motor control of writing in left-handers. Science. 1979;205(4412):1285-9. doi.10.1126/science.472745.
Sabaté M, González B, Rodrı́guez M. Brain lateralization of motor imagery: motor planning asymmetry as a cause of movement lateralization. Neuropsychologia. 2004;42(8):1041-9. doi:10.1016/j.neuropsychologia.2003.12.015
Kim S-G, Ashe J, Hendrich K, Ellermann JM, Merkle H, Ugurbil K, et al. Functional magnetic resonance imaging of motor cortex: hemispheric asymmetry and handedness. Science. 1993;261(5121):615-7. doi:10.1126/science.8342027.
Kawashima R, Yamada K, Kinomura S, Yamaguchi T, Matsui H, Yoshioka S, et al. Regional cerebral blood flow changes of cortical motor areas and prefrontal areas in humans related to ipsilateral and contralateral hand movement. Brain Res. 1993;623(1):33-40. doi:10.1016/0006-8993(93)90006-9
- Abstract Viewed: 484 times
- PDF Downloaded: 466 times