The Effect of Photobiomodulation on Distraction Osteogenesis
Journal of Lasers in Medical Sciences,
Vol. 10 No. 4 (2019),
1 October 2019
,
Page 330-337
Abstract
Distraction osteogenesis (DO) is a surgical procedure to increase bone height in different body parts. DO includes a surgical incision, wherein the bone is cut and a device is installed for further separation of the two ends by gradual unscrewing of the device screw. New bone gradually forms and fills the gap, and the bone height increases as such.
Photobiomodulation (PBM) or low-level laser therapy (LLLT) enhances the formation of soft and hard tissue such as bone and can, therefore, accelerate the process of DO and shorten the duration of different surgical phases of DO such as latency, activation, and consolidation.
Different laser types with variable exposure settings and protocols have been used for this purpose. The gallium-aluminum-arsenide (GaAlAs) diode laser is the most commonly used laser type for LLLT. This study reviews 18 published articles on the effects of LLLT on DO and summarizes their findings to further elucidate this topic.
- Photobiomodulation
- Low-Level Laser Therapy
- Distraction Osteogenesis
- Bone Healing
- Surgically-Assisted Rapid Palatal Expansion
How to Cite
References
Sousa MV, Pinzan A, Consolaro A, Henriques JF, de Freitas MR. Systematic literature review: influence of low-level laser on orthodontic movement and pain control in humans. Photomed Laser Surg. 2014;32(11):592-9. doi:10.1089/pho.2014.3789
Eells J, Henry M, Summerfelt P, Wong-Riley M, Buchmann E, Kane M, et al. Therapeutic photobiomodulation for methanol-induced retinal toxicity. Proc Nati Acad of Sci U S A. 2003;100(6):3439-44. doi.org/10.1073/pnas.0534746100
Oron U, Ilic S, De Taboada L, Streeter J. Ga-As (808 nm) laser irradiation enhances ATP production in human neuronal cells in culture. Photomed Laser Surg. 2007;25(3):180-2. doi.org/10.1089/pho.2007.2064
Leonida A, Paiusco A, Rossi G, Carini F, Baldoni M, Caccianiga G. Effects of low-level laser irradiation on proliferation and osteoblastic differentiation of human mesenchymal stem cells seeded on a three-dimensional biomatrix: in vitro pilot study. Lasers Med Sci. 2013;28(1):125-32. doi:10.1007/s10103-012-1067-6
Pires Oliveira DA, de Oliveira RF, Zangaro RA, Soares CP. Evaluation of low-level laser therapy of osteoblastic cells. Photomed Laser Surg. 2008;26(4):401-4. doi:10.1089/pho.2007.2101
Fujita S, Yamaguchi M, Utsunomiya T, Yamamoto H, Kasai K. Low‐energy laser stimulates tooth movement velocity via expression of RANK and RANKL. Orthod Craniofac Res. 2008;11(3):143-55. doi:10.1111/j.1601-6343.2008.00423.x
Noba C, Mello-Moura ACV, Gimenez T, Tedesco TK, Moura-Netto C. Laser for bone healing after oral surgery: systematic review. Lasers Med Sci. 2018;33(3):667-74. doi.org/10.1007/s10103-017-2400-x
Silva Júnior AN, Pinheiro AL, Oliveira MG, Weismann R, Pedreira Ramalho LM, Amadei Nicolau R. Computerized morphometric assessment of the effect of low-level laser therapy on bone repair: an experimental animal study. J Clin Laser Med Surg. 2002;20(2):83-7. doi:10.1089/104454702753768061
Rahimi A, Rabiei S, Mojahedi SM, Kosarieh E. Application of Low Level Laser in Temporomandibular Disorders. J Lasers Med Sci. 2011;2(4):165-70.
Seyyedi SA, Olyaee P, Sani ZD, Falaki F. Low level laser therapy (LLLT) for orofacial pain. J Lasers Med Sci. 2012;3(3):97-101.
Carroll JD, Milward MR, Cooper PR, Hadis M, Palin WM. Developments in low level light therapy (LLLT) for dentistry. Dent Mater. 2014;30(5):465-75. doi.org/10.1016/j.dental.2014.02.006
Khadra M, Kasem N, Haanæs HR, Ellingsen JE, Lyngstadaas SP. Enhancement of bone formation in rat calvarial bone defects using low-level laser therapy. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2004;97(6):693-700. doi:10.1016/j.tripleo.2003.11.008
Pretel H, Lizarelli RF, Ramalho LT. Effect of low‐level laser therapy on bone repair: Histological study in rats. Lasers Surg Med. 2007;39(10):788-96. https://doi.org/10.1002/lsm.20585
Pugliese LS, Medrado AP, Reis SR, Andrade ZD. The influence of low-level laser therapy on biomodulation of collagen and elastic fibers. Pesqui Odontol Bras. 2003;17(4):307-13. doi:10.1590/S1517-74912003000400003
Mirsky N, Krispel Y, Shoshany Y, Maltz L, Oron U. Promotion of angiogenesis by low energy laser irradiation. Antioxid Redox Signal. 2002;4(5):785-90. doi:10.1089/152308602760598936
Mok Y, Pang K, Au C, Yew D. Preliminary observations on the effects in vivo and in vitro of low dose laser on the epithelia of the bladder, trachea and tongue of the mouse. Scanning microsc. 1988;2(1):493-502.
Vinck EM, Cagnie BJ, Cornelissen MJ, Declercq HA, Cambier DC. Increased fibroblast proliferation induced by light emitting diode and low power laser irradiation. Lasers Med Sci. 2003;18(2):95-9. doi:10.1007/s10103-003-0262-x
Farivar S, Malekshahabi T, Shiari R. Biological effects of low level laser therapy. J Lasers Med Sci. 2014;5(2):58. doi.org/10.22037/jlms.v5i2.5540
Lim H-M, Lew KK, Tay DK. A clinical investigation of the efficacy of low level laser therapy in reducing orthodontic postadjustment pain. Am J of Orthod and Dentofacial Orthop. 1995;108(6):614-22. doi:10.1016/S0889-5406(95)70007-2
Dörtbudak O, Haas R, Mailath‐Pokorny G. Biostimulation of bone marrow cells with a diode soft laser. Clin Oral Implants Res. 2000;11(6):540-5. doi:10.1034/j.1600-0501.2000.011006540.x
Kasai S, Kono T, Yamamoto Y, Kotani H, Sakamoto T, Mito M. Effect of low-power laser irradiation on impulse conduction in anesthetized rabbits. J Clin Laser Med Sur. 1996;14(3):107-9. doi:10.1089/clm.1996.14.107
Marquezan M, Bolognese AM, de Souza Araújo MT. Effects of two low-intensity laser therapy protocols on experimental tooth movement. Photomed Laser Surg. 2010;28(6):757-62. /doi.org/10.1089/pho.2009.2694
Ozawa Y, Shimizu N, Kariya G, Abiko Y. Low-energy laser irradiation stimulates bone nodule formation at early stages of cell culture in rat calvarial cells. Bone. 1998;22(4):347-54. doi.org/10.1016/S8756-3282(97)00294-9
Ilizarov GA. The tension-stress effect on the genesis and growth of tissues. Part I. The influence of stability of fixation and soft-tissue preservation. Clin Orthop Relat Res. 1989(238):249-81.
Aronson J. Experimental and clinical experience with distraction osteogenesis. Cleft Palate Craniofac J. 1994;31(6):473-82. doi.org/10.1597/1545-1569_1994_031_0473_eacewd_2.3.co_2
Ai-Aql Z, Alagl AS, Graves DT, Gerstenfeld LC, Einhorn TA. Molecular mechanisms controlling bone formation during fracture healing and distraction osteogenesis. J Den Res. 2008;87(2):107-18. doi:10.1177/154405910808700215
Aronson J, Good B, Stewart C, Harrison B, Harp J. Preliminary studies of mineralization during distraction osteogenesis. Clin Orthop Relat Res. 1990(250):43-9.
Tahiri Y, Taylor J, editors. An update on midface advancement using Le Fort II and III distraction osteogenesis. Semin Plast Surg. 2014; 28(4):184-192. doi:10.1055/s-0034-1390171
Dimitroulis G. Condylar injuries in growing patients. Aust Dent J. 1997;42(6):367-71. doi:10.1111/j.1834-7819.1997.tb06079.x
Chin M, Toth BA. Distraction osteogenesis in maxillofacial surgery using internal devices: review of five cases. J Oral Maxillofac Surg. 1996;54(1):45-53. doi:10.1016/S0278-2391(96)90303-1
Cohen SR, Simms C, Burstein FD. Mandibular distraction osteogenesis in the treatment of upper airway obstruction in children with craniofacial deformities. Plast Reconstr Surg. 1998;101(2):312-8. doi:10.1097/00006534-199802000-00008
Barber S, Carter L, Mannion C, Bates C. Distraction Osteogenesis Part 1: History and Uses in the Craniofacial Region. Orthod Update. 2018;11(1):14-20. doi.org/10.12968/ortu.2018.11.1.14
Koudstaal M, Poort L, Van der Wal K, Wolvius E, Prahl-Andersen B, Schulten A. Surgically assisted rapid maxillary expansion (SARME): a review of the literature. Int J Oral Maxillofac Surg. 2005;34(7):709-14. doi:10.1016/j.ijom.2005.04.025
Starch-Jensen T, Blæhr TL. Transverse expansion and stability after segmental Le fort I osteotomy versus surgically assisted rapid maxillary expansion: a systematic review. J Oral Maxillofac Res. 2016 Dec 28;7(4): e1. doi: 10.5037/jomr.2016.7401.
McCarthy JG, Stelnicki EJ, Mehrara BJ, Longaker MT. Distraction osteogenesis of the craniofacial skeleton. Plast Reconstr Surg. 2001;107(7):1812-27. doi:10.1097/00006534-200106000-00029
Taha SK, El Fattah SA, Said E, Abdel-Hamid M, Nemat AH, El Shenawy H. Effect of Laser Bio-Stimulation on Mandibular Distraction Osteogenesis: An Experimental Study. J Oral Maxillofac Surg. 2018;76(11):2411-2421. doi: 10.1016/j.joms.2018.04.030.
Abd-Elaal AZ, El-Mekawii HA, Saafan AM, El Gawad LA, El-Hawary YM, Abdelrazik MA. Evaluation of the effect of low-level diode laser therapy applied during the bone consolidation period following mandibular distraction osteogenesis in the human. Int J Oral Maxillofac Surg. 2015 Aug;44(8):989-97. doi: 10.1016/j.ijom.2015.04.010.
Vannucci MG, Dreyer J, Kreisner P, Gaião L, Moraes JFD, de Oliveira MG. Histological and physical analysis of bone neoformation by osteogenesis distraction: A preliminary report. Ann Maxillofac Surg. 2011;1(1):26-31. doi:10.4103/2231-0746.83150
Gurler G, Gursoy B. Investigation of effects of low level laser therapy in distraction osteogenesis. J stomatol oral Maxillofac Surg. 2018;119(6):469-76. doi:10.1016/j.jormas.2018.05.006
Freddo AL, Giongo CC, Ponzoni D, Corsetti A, Puricelli E. Influence of a Magnetic Field and Laser Therapy on the Quality of Mandibular Bone During Distraction Osteogenesis in Rabbits. J Oral Maxillofac Surg. 2016;74(11): 2287.e1-e8. doi:10.1016/j.joms.2016.07.010
Medeiros MA, do Nascimento LE, Lau TCL, Mineiro AL, Pithon MM, Sant'Anna EF. Effects of laser vs ultrasound on bone healing after distraction osteogenesis: A histomorphometric analysis. Angle Orthod. 2014;85(4):555-61. doi.org/10.2319/061414-431.1
Cakir-Ozkan N, Bereket C, Arici N, Elmali M, Sener I, Bekar E. The Radiological and Stereological Analysis of the Effect of Low-Level Laser Therapy on the Mandibular Midline Distraction Osteogenesis. J Craniofac Surg. 2015 Oct;26(7): e595-9. doi: 10.1097/SCS.0000000000002046.
Fazilat F, Ghoreishian M, Fekrazad R, Kalhori KA, Khalili SD, Pinheiro ALB. Cellular effect of low-level laser therapy on the rate and quality of bone formation in mandibular distraction osteogenesis. Photomed Laser Surg. 2014;32(6):315-21. doi:10.1089/pho.2013.3559
do Nascimento LEAG, Sant'Anna EF, de Oliveira Ruellas AC, Nojima LI, Gonçalves Filho AC, Freitas SAP. Laser versus ultrasound on bone density recuperation after distraction osteogenesis- A cone-beam computer tomographic analysis. J Oral Maxillofac Surg. 2013;71(5):921-8. doi:10.1016/j.joms.2012.11.010
Kan B, Tasar F, Korkusuz P, Ersoy O, Cetinkaya A, Gur CZ, et al. Histomorphometrical and radiological comparison of low-level laser therapy effects on distraction osteogenesis: experimental study. Lasers Med Sci. 2014;29(1):213-20. doi.org/10.1007/s10103-013-1308-3
Kocyigit ID, Coskunses FM, Pala E, Tugcu F, Onder E, Mocan A. A comparison of the low-level laser versus low intensity pulsed ultrasound on new bone formed through distraction osteogenesis. Photomed Laser Surg. 2012;30(8):438-43. doi:10.1089/pho.2012.3263
Mayer L, Freddo AL, Blaya DS, de Oliveira MG, De Conto F. Effects of low-level laser therapy on distraction osteogenesis: a histological analysis. RFO UPF. 2012;17(3):326-31.
Freddo A-L, Hübler R, de Castro-Beck C-A, Heitz C, de Oliveira M-G. A preliminary study of hardness and modulus of elasticity in sheep mandibles submitted to distraction osteogenesis and low-level laser therapy. Med Oral Patol Oral Cir Bucal. 2012;17(1): e102–e107. 10.4317/medoral.17280
Kreisner PE, Blaya DS, Gaião L, Santos MESM, Etges A, Sant'Ana Filho M, et al. Histological evaluation of the effect of low-level laser on distraction osteogenesis in rabbit mandibles. Med oral Patol Oral Cir Bucal. 2010;15(4): e616-e618. doi:10.4317/medoral.15.e616
Angeletti P, Pereira MD, Gomes HC, Hino CT, Ferreira LM. Effect of low-level laser therapy (GaAlAs) on bone regeneration in midpalatal anterior suture after surgically assisted rapid maxillary expansion. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2010;109(3): e38-e46. doi:10.1016/j.tripleo.2009.10.043
Hübler R, Blando E, Gaião L, Kreisner PE, Post LK, Xavier CB, et al. Effects of low-level laser therapy on bone formed after distraction osteogenesis. Lasers Med Sci. 2010;25(2):213-9. doi:10.1007/s10103-009-0691-2
Miloro M, Miller JJ, Stoner JA. Low-level laser effect on mandibular distraction osteogenesis. J Oral Maxillofac Surg. 2007;65(2):168-76. doi:10.1016/j.joms.2006.10.002
Cerqueira A, Silveira RL, Oliveira MGd, Sant'ana Filho M, Heitz C. Bone tissue microscopic findings related to the use of diode laser (830etam) in ovine mandible submitted to distraction osteogenesis. Acta Cir Bras. 2007;22(2):92-7. doi.org/10.1590/S0102-86502007000200003
Santinoni CD, Oliveira HF, Batista VE, Lemos CA, Verri FR. Influence of low-level laser therapy on the healing of human bone maxillofacial defects: A systematic review. J Photochem Photobiol B. 2017;169:83-9. doi:10.1016/j.jphotobiol.2017.03.004
Ebrahimi T, Moslemi N, Rokn A, Heidari M, Nokhbatolfoghahaie H, Fekrazad R. The influence of low-intensity laser therapy on bone healing. J Dent (Tehran). 2012;9(4): 238–248.
Davoudi A, Amrolahi M, Khaki H. Effects of laser therapy on patients who underwent rapid maxillary expansion; a systematic review. Lasers Med Sci. 2018; 33(6): 1387–1395. doi;10.1007/s10103-018-2545-2
- Abstract Viewed: 762 times
- PDF Downloaded: 494 times