The Effect of Prenatal Exposure to 2.4 GHz Radio Frequency on the Histology and Expression of the osteocalcin and RUNX2 Gene of the Forelimb in an NMRI Mouse
Journal of Lasers in Medical Sciences,
Vol. 10 No. 4 (2019),
1 October 2019
,
Page 283-289
Abstract
Introduction: Today the use of electromagnetic waves has dramatically increased in modern industrial societies. This study aimed to investigate the effect of prenatal exposure to 2.4 GHz wireless frequency on forelimb development in an NMRI mouse in vivo.
Methods: A total of 21 female mice weighing 25-30 g were included in the present study. They were randomly assigned to three groups, namely control (n=7), sham (n=7), and experimental (n=7). After mating, the experimental group was exposed to 2.4 GHz radio frequency at a distance of 20-30 cm from the device, 4 h per day until the delivery. The sham group was placed at a distance of 20-30 cm from the device every day without exposure to electromagnetic waves, and the control group had a pregnancy period without any stress and electromagnetic wave exposure. After giving birth, the forelimbs were isolated from the infants and examined by stereological studies and RT-PCR for the evaluation of osteocalcin and RUNX2 gene expression.
Results: Although, at first glance, there was no macroscopic teratogen effect in forelimbs in all groups, via a stereological method, we showed that bone and cartilage volume decreased in the experimental group compared to the other groups. We also found that the experimental group had lower expression of the osteocalcin and RUNX2 gene than the control and sham groups did. However, there were no significant differences between the control and sham groups in terms of bone and cartilage volume and gene expression.
Conclusion: Although teratogen effect of prenatal exposure to 2.4 GHz radio frequency on forelimbs was not demonstrated macroscopically, further studies showed negative effects on the forelimb bone, cartilage volume, and gene expression.
- Development
- Electromagnetic Fields
- Forelimb
- Prenatal
- RUNX2
How to Cite
References
Gye MC, Park CJ. Effect of electromagnetic field exposure on the reproductive system. Clin Exp Reprod Med. 2012 Mar; 39(1):1-9.
Hardell L, Sage C. Biological effects from electromagnetic field exposure and public exposure standards. Biomed Pharmacother. 2008 Feb; 62(2):104-109. doi:10.1016/j.biopha.2007.12.004
Carpenter DO. Human disease resulting from exposure to electromagnetic fields1. Rev Environ Health. 2013 Dec; 28(4):159-172. doi:10.1515/reveh-2013-0016
Davis GE, Lowell WE. Peaks of solar cycles affect the gender ratio. Med Hypotheses. 2008 Dec; 71(6): 829-838. doi:10.1016/j.mehy.2008.07.020
Czyz J, Guan K, Zeng Q, Nikolova T, Meister A, Schönborn F, et al. High frequency electromagnetic fields (GSM signals) affect gene expression levels in tumor suppressor p53-deficient embryonic stem cells. Bioelectromagnetics. 2004 May; 25(4): 296-307. doi:10.1002/bem.10199
Markovà E, Malmgren LO, Belyaev IY. Microwaves from mobile phones inhibit 53BP1 focus formation in human stem cells more strongly than in differentiated cells: possible mechanistic link to cancer risk. Environ Health Perspect. 2010 Oct; 118 (3): 394-399. doi:10.1289/ehp.0900781
Hanci H, Odaci E, Kaya H, Aliyazıcıoğlu Y, Turan İ, Demir S, et al. The effect of prenatal exposure to 900-MHz electromagnetic field on the 21-old-day rat testicle. Reprod Toxicol. 2013 Dec; 42:203-209. doi:10.1016/j.reprotox.2013.09.006
Odaci E, Hanci H, Yulug E, Turedi S, Aliyazicioglu Y, Kaya H, et al. Effects of prenatal exposure to a 900 MHz electromagnetic field on 60-day-old rat testis and epididymal sperm quality. Biotech Histochem. 2016 Jan; 91(1): 9-19. doi:10.3109/10520295.2015.1060356
Odaci E, Unal D, Mercantepe T, Topal Z, Hanci H, Turedi S, et al. Pathological effects of prenatal exposure to a 900 MHz electromagnetic field on the 21-day-old male rat kidney. Biotech Histochem. 2015 Feb; 90(2): 93-101. doi:10.3109/10520295.2014.947322
Türedi S, Hancı H, Çolakoğlu S, Kaya H, Odaci E. Disruption of the ovarian follicle reservoir of prepubertal rats following prenatal exposure to a continuous 900-MHz electromagnetic field. Int J Radiat Biol. 2016 Jun; 92 (6):329-337. doi:10.3109/09553002.2016.1152415
Türedi S, Hancı H, Topal Z, Ünal D, Mercantepe T, Bozkurt I, et al. The effects of prenatal exposure to a 900-MHz electromagnetic field on the 21-day-old male rat heart. Electromagn Biol Med. 2015 Oct; 34(4):390-397. doi:10.3109/15368378.2014.952742
Erkut A, Tumkaya L, Balik MS, Kalkan Y, Guvercin Y, Yilmaz A, et al. The effect of prenatal exposure to 1800 MHz electromagnetic field on calcineurin and bone development in rats. Acta Cirurgica Brasileira. 2016 Feb;31(2):74-83. doi:10.1590/S0102-865020160020000001
Saito K, Suzuki H, Suzuki K. Teratogenic effects of static magnetic field on mouse fetuses. Reprod Toxicol. 2006 Jul; 22(1):118-124. doi:10.1016/j.reprotox.2005.08.003
Bernabò N, Tettamanti E, Pistilli MG, Nardinocchi D, Berardinelli P, Mattioli M, et al. Effects of 50 Hz extremely low frequency magnetic field on the morphology and function of boar spermatozoa capacitated in vitro. Theriogenology. 2007 Mar;67(4):801-815. 10.1016/j.theriogenology.2006.10.014
Pourlis AF. Reproductive and developmental effects of EMF in vertebrate animal models. Pathophysiology. 2009 Aug; 16(2-3):179-189. doi: 10.1016/j.pathophys.2009.01.010
Darabi S, Tiraihi T, Noorizadeh A, Rajaei F, Darabi L, Abbaszadeh H. Creatine and retinoic acid effects on the induction of autophagy and differentiation of adipose tissue-derived stem cells into GABAergic-like neurons. Caspian J Intern Med. 2017 Aug;19(8):41-49. doi: 10.22088/jbums.19.8.41
Aldad TS, Gan G, Gao XB, Taylor HS. Fetal radiofrequency radiation exposure from 800-1900 mhz-rated cellular telephones affects neurodevelopment and behavior in mice. Sci Rep. 2012 Mar; 16(2):312-318. doi:10.1038/srep00312
Ogawa K, Nabae K, Wang J, Wake K, Watanabe SI, Kawabe M, et al. Effects of gestational exposure to 1.95-GHz W-CDMA signals for IMT-2000 cellular phones: Lack of embryotoxicity and teratogenicity in rats. Bioelectromagnetics 2009 Apr;30(3):205-212. doi:10.1002/bem.20456
Lee HJ, Pack JK, Gimm YM, Choi HD, Kim N, Kim SH. Teratological evaluation of mouse fetuses exposed to a 20 kHz EMF. Bioelectromagnetics 2009 Jan; 30(4):330-333.
Mcdonald AD, Mcdonald JC, Armstrong B, Cherry N, Nolin AD, Robert D. Work with visual display units in pregnancy. Br J Ind Med. 1988 Aug; 45(8):509-515. doi:10.1136/oem.45.8.509
Windham GC, Fenster L, Swan SH, Neutra RR. Use of video display terminals during pregnancy and the risk of spontaneous abortion, low birthweight, or intrauterine growth retardation. Am J Ind Med. 1990;18(6):675-688. doi:10.1002/ajim.4700180606
Schnorr TM, Grajewski BA, Hornung RW, Thun MJ, Egeland GM, et al. Video display terminals and the risk of spontaneous abortion. N Engl J Med. 1991 Mar; 324(11):727-733. doi: 10.1056/NEJM199103143241104
Grasso P, Parazzini F, Chatenoud L, Di Cintio E, Benzi G. Exposure to video display terminals and risk of spontaneous abortion. Am J Ind Med. 1997; 32(4):403-407.
Mahram M, Ghazavi M. The effect of extremely low frequency electromagnetic fields on pregnancy and fetal growth, and development. Arch Iran Med. 2013 Apr; 16(4): 221-224.
Sadeghi T, Ahmadi A, Javadian M, Gholamian Sayyed A, Delavar Mouloud A, Esmailzadeh S. Preterm birth among women living within 600 meters of high voltage overhead Power Lines: a case-control study. Rom J Intern Med. 2017 Sep;32(7):1545-1560. doi: 10.1007/s10103-017-2278-7.
Mohsenifar Z, Fridoni M, Ghatrehsamani M, Abdollahifar MA, Abbaszadeh H, Mostafavinia A, et al. Evaluation of the effects of pulsed wave LLLT on tibial diaphysis in two rat models of experimental osteoporosis, as examined by stereological and real-time PCR gene expression analyses. Lasers Med Sci. 2016;31(4):721-732. doi: 10.1007/s10103-016-1916-9
Kowalczuk CI, Robbins L, Thomas JM, Butland BK, Saunders RD. Effects of prenatal exposure to 50 Hz magnetic fields on development in mice: I. Implantation rate and fetal development. Bioelectromagnetics. 1994; 15(4): 349-361. doi:10.1002/bem.2250150409
Ohnishi Y, Mizuno F, Sato T, Yasui M, Kikuchi T, Ogawa M. Effects of power frequency alternating magnetic fields on reproduction and pre-natal development of mice. J Toxicol Sci. 2002; 27(3):131-138. doi:10.2131/jts.27.131
Kim SH, Song JE, Kim SR, Oh H, Gimm YM, Yoo DS, et al. Teratological studies of prenatal exposure of mice to a 20 kHz sawtooth magnetic field. Bioelectromagnetics. 2004 Feb; 25(2):114-117. doi:10.1002/bem.10164
Hancı H, Türedi S, Topal Z, Mercantepe T, Bozkurt I, Kaya H, et al. Can prenatal exposure to a 900 MHz electromagnetic field affect the morphology of the spleen and thymus, and alter biomarkers of oxidative damage in 21-day-old male rats?. Biotech Histochem. 2015 Oct; 90(7): 535-543. doi:10.3109/10520295.2015.1042051
Poulletier De Gannes F, Haro E, Hurtier A, Taxile M, Athane A, et al. Effect of in utero wi-fi exposure on the pre- and postnatal development of rats. Birth Defects Res B Dev Reprod Toxicol. 2012 Apr; 95(2):130-136. doi:10.1002/bdrb.20346
Amini A, Pouriran R, Abdollahifar MA, Abbaszadeh HA, Ghoreishi SK, Chien S, et al. Stereological and molecular studies on the combined effects of Photobiomodulation and human bone marrow mesenchymal stem cell conditioned medium on wound healing in diabetic rats. J Photochem Photobiol B. 2018 May; 182:42-51. doi:10.1016/j.jphotobiol.2018.03.010
Ishida M, Amano S. Osteocalcin fragment in bone matrix enhances osteoclast maturation at a late stage of osteoclast differentiation. J Bone Miner Metab. 2004 Sep; 22(5):415-429. doi:10.1007/s00774-004-0503-5
Grassi F, Tell G, Robbie-Ryan M, Gao Y, Terauchi M, Yang X, et al. Oxidative stress causes bone loss in estrogen-deficient mice through enhanced bone marrow dendritic cell activation. Proc Natl Acad Sci USA. 2007 Sep; 104(38):15087-15092. doi:10.1073/pnas.0703610104
Atashi F, Modarressi A, Pepper MS. The role of reactive oxygen species in mesenchymal stem cell adipogenic and osteogenic differentiation: a review. Stem Cells Dev. 2015 Jan; 24(10): 1150-1163. doi:10.1089/scd.2014.0484
- Abstract Viewed: 676 times
- PDF Downloaded: 245 times