The Effect of Quorum-Sensing and Efflux Pumps Interactions in Pseudomonas aeruginosa Against Photooxidative Stress
Journal of Lasers in Medical Sciences,
Vol. 9 No. 3 (2018),
28 July 2018
,
Page 161-167
Abstract
Resistant infections essentially cause mortality in a burn unit. Several bacteria contribute to burn infections; among these, Pseudomonas aeruginosa majorly contributes to these infections revealing significant drug resistance. Similar to other bacteria, P. aeruginosa reveals various mechanisms to attain highest pathogenicity and resistance; among these, efflux pumps and quorum sensing are crucial. Quorum sensing enables effective communication between bacteria and synchronizes their gene expression resulting in optimum effect of the secreted proteins; alternatively, efflux pumps increase the bacterial resistance by pumping out the antimicrobial factors as well as the QS signals and precursors. Of recent, increasing episodes of drug resistance led to new findings and approaches for killing pathogenic bacteria without inducing the drug-resistant species. Photodynamic therapy (PDT), considered as an adjuvant and innovative method for conventional antibiotic therapy, is a photochemical reaction that includes visible light, oxygen, and a photosensitizer (PS). In this therapy, after exposure to visible light, the PS generates reactive oxygen species (ROS) that are bacteriostatic or bactericidal. Furthermore, this oxidative stress can disrupt the coordination of gene expression and alter the bacterial behavior. Considering the fact that the adaption and several gene expression patterns of microorganisms within the biofilm make them notably resistant to the recent antimicrobial treatments, this study aimed to emphasize the relationship between the efflux pump and QS under oxidative stress and their role in P. aeruginosa’s reaction to PDT.- Antimicrobial photodynamic therapy
- Pseudomonas aeruginosa
- Quorum sensing
How to Cite
References
Naqvi A, Zulfiqar S, Abbas Naqvi SM, Usman M, Naqvi S, Baqar S. Burn wound infection; significance of rule of nine in microbial surveillance. Professional Medical Journal. 2014;21(5):869-73
Agnihotri N, Gupta V, Joshi RM. Aerobic bacterial isolates from burn wound infections and their antibiograms--a five-year study. Burns. 2004;30(3):241-243. doi:10.1016/j. burns.2003.11.010
Jayaraman A, Wood TK. Bacterial quorum sensing: signals, circuits, and implications for biofilms and disease. Annu Rev Biomed Eng. 2008;10:145-167. doi:10.1146/annurev. bioeng.10.061807.160536
Fuqua WC, Winans SC, Greenberg EP. Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J Bacteriol. 1994;176(2):269-275.
Waters CM, Bassler BL. Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol. 2005;21:319-346. doi:10.1146/annurev. cellbio.21.012704.131001
Hawver LA, Jung SA, Ng WL. Specificity and complexity in bacterial quorum-sensing systems. FEMS Microbiol Rev. 2016;40(5):738-752. doi:10.1093/femsre/fuw014
Antunes LC, Ferreira RB, Buckner MM, Finlay BB. Quorum sensing in bacterial virulence. Microbiology. 2010;156(Pt 8):2271-2282. doi:10.1099/mic.0.038794-0
Papenfort K, Bassler BL. Quorum sensing signal-response systems in Gram-negative bacteria. Nat Rev Microbiol. 2016;14(9):576-588. doi:10.1038/nrmicro.2016.89
Bassler BL. How bacteria talk to each other: regulation of gene expression by quorum sensing. Curr Opin Microbiol. 1999;2(6):582-587.
Ng WL, Bassler BL. Bacterial quorum-sensing network architectures. Annu Rev Genet. 2009;43:197-222. doi:10.1146/annurev-genet-102108-134304
Li YH, Tian X. Quorum sensing and bacterial social interactions in biofilms. Sensors (Basel). 2012;12(3):2519- 2538. doi:10.3390/s120302519
Lee J, Zhang L. The hierarchy quorum sensing network in Pseudomonas aeruginosa. Protein Cell. 2015;6(1):26-41. doi:10.1007/s13238-014-0100-x
Schuster M, Sexton DJ, Diggle SP, Greenberg EP. Acyl-homoserine lactone quorum sensing: from evolution to application. Annu Rev Microbiol. 2013;67:43-63. doi:10.1146/annurev-micro-092412-155635
Parsek MR, Greenberg EP. Acyl-homoserine lactone quorum sensing in gram-negative bacteria: a signaling mechanism involved in associations with higher organisms. Proc Natl Acad Sci U S A. 2000;97(16):8789-8793.
Smith RS, Iglewski BH. P. aeruginosa quorum-sensing systems and virulence. Curr Opin Microbiol. 2003;6(1):56- 60. doi:10.1016/S1369-5274(03)00008-0
Rasamiravaka T, El Jaziri M. Quorum-sensing mechanisms and bacterial response to antibiotics in P. aeruginosa. Curr Microbiol. 2016;73(5):747-753. doi:10.1007/s00284-016- 1101-1
Spengler G, Kincses A, Gajdacs M, Amaral L. New roads leading to old destinations: efflux pumps as targets to reverse multidrug resistance in bacteria. Molecules. 2017;22(3). doi:10.3390/molecules22030468
Hassan KA, Liu Q, Henderson PJ, Paulsen IT. Homologs of the Acinetobacter baumannii AceI transporter represent a new family of bacterial multidrug efflux systems. MBio. 2015;6(1). doi:10.1128/mBio.01982-14
Alibert S, N’Gompaza Diarra J, Hernandez J, et al. Multidrug efflux pumps and their role in antibiotic and antiseptic resistance: a pharmacodynamic perspective. Expert Opin Drug Metab Toxicol. 2017;13(3):301-309. doi :10.1080/17425255.2017.1251581
Piddock LJ. Multidrug-resistance efflux pumps - not just for resistance. Nat Rev Microbiol. 2006;4(8):629-636. doi:10.1038/nrmicro1464
Alcalde-Rico M, Hernando-Amado S, Blanco P, Martinez JL. Multidrug efflux pumps at the crossroad between antibiotic resistance and bacterial virulence. Front Microbiol. 2016;7:1483. doi:10.3389/fmicb.2016.01483
Van Acker H, Coenye T. The role of efflux and physiological adaptation in biofilm tolerance and resistance. J Biol Chem. 2016;291(24):12565-12572. doi:10.1074/jbc.R115.707257
Tian ZX, Yi XX, Cho A, O’Gara F, Wang YP. CpxR activates MexAB-OprM efflux pump expression and enhances antibiotic resistance in both laboratory and clinical nalB-Type Isolates of Pseudomonas aeruginosa. PLoS Pathog. 2016;12(10):e1005932. doi:10.1371/journal.ppat.1005932
Kohler T, van Delden C, Curty LK, Hamzehpour MM, Pechere JC. Overexpression of the MexEF-OprN multidrug efflux system affects cell-to-cell signaling in Pseudomonas aeruginosa. J Bacteriol. 2001;183(18):5213-5222. doi:10.1128/JB.183.18.5213–5222.2001
Nikaido H, Pages JM. Broad-specificity efflux pumps and their role in multidrug resistance of gram-negative bacteria. FEMS Microbiol Rev. 2012;36(2):340-363. doi:10.1111/ j.1574-6976.2011.00290.x
Schweizer HP. Efflux as a mechanism of resistance to antimicrobials in Pseudomonas aeruginosa and related bacteria: unanswered questions. Genet Mol Res. 2003;2(1):48-62.
Blanco P, Hernando-Amado S, Reales-Calderon JA, et al. Bacterial multidrug efflux pumps: much more than antibiotic resistance determinants. Microorganisms. 2016;4(1). doi:10.3390/microorganisms4010014
Zhang L, Mah TF. Involvement of a novel efflux system in biofilm-specific resistance to antibiotics. J Bacteriol. 2008;190(13):4447-4452. doi:10.1128/jb.01655-07
Folsom JP, Richards L, Pitts B, et al. Physiology of Pseudomonas aeruginosa in biofilms as revealed by transcriptome analysis. BMC Microbiol. 2010;10:294. doi:10.1186/1471-2180-10-294
Stewart PS, Franklin MJ, Williamson KS, Folsom JP, Boegli L, James GA. Contribution of stress responses to antibiotic tolerance in Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother. 2015;59(7):3838-3847. doi:10.1128/ aac.00433-15
Liao J, Schurr MJ, Sauer K. The MerR-like regulator BrlR confers biofilm tolerance by activating multidrug efflux pumps in Pseudomonas aeruginosa biofilms. J Bacteriol. 2013;195(15):3352-3363. doi:10.1128/jb.00318-13
Pu Y, Ke Y, Bai F. Active efflux in dormant bacterial cells - New insights into antibiotic persistence. Drug Resist Updat. 2017;30:7-14. doi:10.1016/j.drup.2016.11.002
Rapoport M, Faccone D, Pasteran F, et al. First Description of mcr-1-Mediated Colistin Resistance in Human Infections Caused by Escherichia coli in Latin America. Antimicrob Agents Chemother. 2016;60(7):4412-4413. doi:10.1128/aac.00573-16
Soto SM. Role of efflux pumps in the antibiotic resistance of bacteria embedded in a biofilm. Virulence. 2013;4(3):223- 229. doi:10.4161/viru.23724
Fahmy A, Srinivasan A, Webber MA. The Relationship Between Bacterial Multidrug Efflux Pumps and Biofilm Formation. In: Li XZ, Elkins CA, Zgurskaya HI. Efflux-Mediated Antimicrobial Resistance in Bacteria: Mechanisms, Regulation and Clinical Implications. Cham: Springer International Publishing; 2016:651-663.
McMurry L, Petrucci RE, Jr., Levy SB. Active efflux of tetracycline encoded by four genetically different tetracycline resistance determinants in Escherichia coli. Proc Natl Acad Sci U S A. 1980;77(7):3974-3977.
Martinez JL, Sanchez MB, Martinez-Solano L, et al. Functional role of bacterial multidrug efflux pumps in microbial natural ecosystems. FEMS Microbiol Rev. 2009;33(2):430-449. doi:10.1111/j.1574-6976.2008.00157.x
Evans K, Passador L, Srikumar R, Tsang E, Nezezon J, Poole K. Influence of the MexAB-OprM multidrug efflux system on quorum sensing in Pseudomonas aeruginosa. J Bacteriol. 1998;180(20):5443-5447.
Pearson JP, Van Delden C, Iglewski BH. Active efflux and diffusion are involved in transport of Pseudomonas aeruginosa cell-to-cell signals. J Bacteriol. 1999;181(4):1203- 1210.
Olivares J, Alvarez-Ortega C, Linares JF, Rojo F, Kohler T, Martinez JL. Overproduction of the multidrug efflux pump MexEF-OprN does not impair Pseudomonas aeruginosa fitness in competition tests, but produces specific changes in bacterial regulatory networks. Environ Microbiol. 2012;14(8):1968-1981. doi:10.1111/j.1462- 2920.2012.02727.x
Rampioni G, Pillai CR, Longo F, et al. Effect of efflux pump inhibition on Pseudomonas aeruginosa transcriptome and virulence. Sci Rep. 2017;7(1):11392-11399. doi:10.1038/ s41598-017-11892-9.
Moore JD, Gerdt JP, Eibergen NR, Blackwell HE. Active efflux influences the potency of quorum sensing inhibitors in Pseudomonas aeruginosa. Chembiochem. 2014;15(3):435- 442. doi:10.1002/cbic.201300701
Minagawa S, Inami H, Kato T, et al. RND type efflux pump system MexAB-OprM of Pseudomonas aeruginosa selects bacterial languages, 3-oxo-acyl-homoserine lactones, for cell-to-cell communication. BMC Microbiol. 2012;12:70. doi:10.1186/1471-2180-12-70
Lopez CA, Travers T, Pos KM, Zgurskaya HI, Gnanakaran S. Dynamics of intact MexAB-OprM efflux pump: focusing on the MexA-OprM interface. Sci Rep. 2017;7(1):16521. doi:10.1038/s41598-017-16497-w
Maseda H, Sawada I, Saito K, Uchiyama H, Nakae T, Nomura N. Enhancement of the mexAB-oprM efflux pump expression by a quorum-sensing autoinducer and its cancellation by a regulator, MexT, of the mexEF-oprN efflux pump operon in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2004;48(4):1320-1328. doi:10.1128/AAC.48.4.1320–1328.2004
Levy JG, Obochi M. New applications in photodynamic therapy. Introduction. Photochem Photobiol. 1996;64(5):737-739.
Dougherty TJ, Gomer CJ, Henderson BW, et al. Photodynamic Therapy. J Natl Cancer Inst. 1998;90(12):889- 905. doi:10.1093/jnci/90.12.889
Moan J, Peng Q. An outline of the hundred-year history of PDT. Anticancer Res. 2003;23(5a):3591-3600.
Ochsner M. Photophysical and photobiological processes in the photodynamic therapy of tumours. J Photochem Photobiol B. 1997;39(1):1-18.
Abrahamse H, Hamblin MR. New photosensitizers for photodynamic therapy. Biochem J. 2016;473(4):347-364. doi:10.1042/bj20150942
Hamblin MR, Newman EL. On the mechanism of the tumour-localising effect in photodynamic therapy. J Photochem Photobiol B. 1994;23(1):3-8. doi:10.1016/S1011- 1344(94)80018-9
Iyer AK, Greish K, Seki T, et al. Polymeric micelles of zinc protoporphyrin for tumor targeted delivery based on EPR effect and singlet oxygen generation. J Drug Target. 2007;15(7-8):496-506. doi:10.1080/10611860701498252
De Rosa FS, Bentley MV. Photodynamic therapy of skin cancers: sensitizers, clinical studies and future directives. Pharm Res. 2000;17(12):1447-1455. doi:10.1023/a:1007612905378
Sharma SK, Dai T, Kharkwal GB, et al. Drug discovery of antimicrobial photosensitizers using animal models. Curr Pharm Des. 2011;17(13):1303-1319.
Tegos GP, Hamblin MR. Phenothiazinium antimicrobial photosensitizers are substrates of bacterial multidrug resistance pumps. Antimicrob Agents Chemother. 2006;50(1):196-203. doi:10.1128/aac.50.1.196-203.2006
Tegos GP, Masago K, Aziz F, Higginbotham A, Stermitz FR, Hamblin MR. Inhibitors of bacterial multidrug efflux pumps potentiate antimicrobial photoinactivation. Antimicrob Agents Chemother. 2008;52(9):3202-3209. doi:10.1128/aac.00006-08
Kishen A, Upadya M, Tegos GP, Hamblin MR. Efflux pump inhibitor potentiates antimicrobial photodynamic inactivation of Enterococcus faecalis biofilm. Photochem Photobiol. 2010;86(6):1343-1349. doi:10.1111/j.1751- 1097.2010.00792.x
Turlin E, Heuck G, Simoes Brandao MI, et al. Protoporphyrin (PPIX) efflux by the MacAB-TolC pump in Escherichia coli. Microbiologyopen. 2014;3(6):849-859. doi:10.1002/mbo3.203
Bartolomeu M, Rocha S, Cunha A, Neves MG, Faustino MA, Almeida A. Effect of photodynamic therapy on the virulence factors of Staphylococcus aureus. Front Microbiol. 2016;7:267. doi:10.3389/fmicb.2016.00267
Pourhajibagher M, Boluki E, Chiniforush N, et al. Modulation of virulence in Acinetobacter baumannii cells surviving photodynamic treatment with toluidine blue. Photodiagnosis Photodyn Ther. 2016;15:202-212. doi:10.1016/j.pdpdt.2016.07.007
Redenski I, Sahar-Helft S, Stabholz A, Steinberg D. Er:YAG Laser irradiation induces behavioral changes in V. harveyi. Photomed Laser Surg. 2017;35(3):164-170. doi:10.1089/ pho.2016.4155
Sharma G, Rao S, Bansal A, Dang S, Gupta S, Gabrani R. Pseudomonas aeruginosa biofilm: potential therapeutic targets. Biologicals. 2014;42(1):1-7. doi:10.1016/j. biologicals.2013.11.001
Hancock RE, Speert DP. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and impact on treatment. Drug Resist Updat. 2000;3(4):247-255. doi:10.1054/drup.2000.0152
Percival SL, Suleman L, Vuotto C, Donelli G. Healthcare-associated infections, medical devices and biofilms: risk, tolerance and control. J Med Microbiol. 2015;64(Pt 4):323- 334. doi:10.1099/jmm.0.000032
- Abstract Viewed: 902 times
- PDF Downloaded: 550 times