Feasibility Study on Discrimination of Neo-plastic and Non-Neoplastic Gastric Tissues Using Spark Discharge Assisted Laser Induced Breakdown Spectroscopy
Journal of Lasers in Medical Sciences,
Vol. 10 No. 1 (2019),
18 December 2018
,
Page 64-69
Abstract
Introduction: The present work is a novel in vitro study that evaluated the possibility of diagnosing neoplastic from nonneoplastic gastric tissues using spark discharge assisted laser induced breakdown spectroscopy (SD-LIBS) method.Methods: In these experiments, the low energy laser pulses ablated a tiny amount of tissue surface leading to plasma formation. Then, a spark discharge was applied to plasma in order to intensify the plasma radiation. Light emission from plasma was recorded as spectra which were analyzed. Gastric tissues of 5 people were studied through this method.
Results: The SD-LIBS technique had the potential to discriminate normal and cancerous tissues based on the significant differences in the intensities of some particular elements. The comparison of normalized calcium (Ca) and magnesium (Mg) peaks of neoplastic and nonneoplastic gastric tissues could be viewed as a practical measure for tissue discrimination since Ca and Mg peaks in spectra of neoplastic were noticeably higher than nonneoplastic.
Conclusion: Considering the identification of gastric cancer, the applied method in these experiments seems quite fast, noninvasive and cost-effective with respect to other conventional methods. The significant increment of specific Ca and Mg lines of neoplastic gastric tissues in comparison to the nonneoplastic ones can be considered as valuable information that might bring about tissue classification. The number of samples in this work, however, was not sufficient for a decisive conclusion and further researches is needed to generalize this idea.
- Gastric
- Laser
- Neo-plastic
- Spectroscopy
- Tissue.
How to Cite
References
Sudhakar A. History of Cancer, Ancient and Modern Treatment Methods. J Cancer Sci Ther. 2009;1(2):1-4. doi:10.4172/1948-5956.100000e2
Zali H, Rezaei-Tavirani M, Azodi M. Gastric cancer: prevention, risk factors and treatment. Gastroenterol Hepatol Bed Bench. 2011;4(4):175-185.
Bahreini M. The effect of substrate on electric field enhancement of tip-enhanced Raman spectroscopy (TERS). AIP Conf Proc. 2018;1920(1):020013. doi:10.1063/1.5018945
Singh VK, Rai AK. Prospects for laser-induced breakdown spectroscopy for biomedical applications: a review. Lasers Med Sci. 2011;26(5):673-687. doi:10.1007/s10103-011-0921- 2
Bahreini M. Role of optical spectroscopic methods in neuro-oncological sciences. J Lasers Med Sci. 2015;6(2):51-61.
Matousek P, Stone N. Prospects for the diagnosis of breast cancer by noninvasive probing of calcifications using transmission Raman spectroscopy. J Biomed Opt. 2007;12(2):024008. doi:10.1117/1.2718934
Izuishi K, Tajiri H, Fujii T, et al. The histological basis of detection of adenoma and cancer in the colon by autofluorescence endoscopic imaging. Endoscopy. 1999;31(7):511-516. doi:10.1055/s-1999-57
Bottiroli G, Croce AC, Locatelli D, et al. Natural fluorescence of normal and neoplastic human colon: a comprehensive “ex vivo” study. Lasers Surg Med. 1995;16(1):48-60.
Singh S, Badaya S. Laser induced breakdown spectroscopy (LIBS) in cervical cancer screening: a proposed tool. N Indian J Surg. 2011;2:299.
Liehr JG, Jones JS. Role of iron in estrogen-induced cancer. Curr Med Chem. 2001;8(7):839-849.
Vahid Dastjerdi M, Derakhshan Zadeh Z, Mousavi SJ, Ranjbar Askari H, Soltanolkotabi M. Hair analysis by means of laser induced breakdown spectroscopy technique and support vector machine model for diagnosing addiction. Iranian Journal of Physics Research. 2018;17(5):661-667. doi:10.29252/ijpr.17.5.661
Bahreini M, Hosseinimakarem Z, Tavassoli SH. A study of association between fingernail elements and osteoporosis by laser-induced breakdown spectroscopy. J Appl Phys. 2012;112(5):054701. doi:10.1063/1.4747934
Shadman S, Bahreini M, Tavassoli SH. Comparison between elemental composition of human fingernails of healthy and opium-addicted subjects by laser-induced breakdown spectroscopy. Appl Opt. 2012;51(12):2004-2011. doi:10.1364/ ao.51.002004
Bahreini M, Tavassoli SH. Possibility of thyroidism diagnosis by laser induced breakdown spectroscopy of human fingernail. J Lasers Med Sci. 2012;3(3):127-31. doi:10.22037/2010.v3i3.3201
Bahreini M, Ashrafkhani B, Tavassoli SH. Discrimination of patients with diabetes mellitus and healthy subjects based on laser-induced breakdown spectroscopy of their fingernails. J Biomed Opt. 2013;18(10):107006. doi:10.1117/1. jbo.18.10.107006
Bahreini M, Ashrafkhani B, Tavassoli SH. Elemental analysis of fingernail of alcoholic and doping subjects by laser-induced breakdown spectroscopy. Appl Phys B. 2014;114(3):439-447. doi:10.1007/s00340-013-5538-7
Ashrafkhani B, Bahreini M, Tavassoli SH. Repeatability improvement of laser-induced breakdown spectroscopy using an auto-focus system. Opt Spectrosc. 2015;118(5):841- 846. doi:10.1134/s0030400x15050057
Riberdy VA, Frederickson CJ, Rehse SJ. Determination of the Zinc Concentration in Human Fingernails Using Laser-Induced Breakdown Spectroscopy. Appl Spectrosc. 2017;71(4):567-582. doi:10.1177/0003702816687568
Gazmeh M, Bahreini M, Tavassoli SH. Discrimination of healthy and carious teeth using laser-induced breakdown spectroscopy and partial least square discriminant analysis. Appl Opt. 2015;54(1):123-131. doi:10.1364/ao.54.000123
Gazmeh M, Bahreini M, Tavassoli SH, Asnaashari M. Qualitative analysis of teeth and evaluation of amalgam elements penetration into dental matrix using laser induced breakdown spectroscopy. J Lasers Med Sci. 2015;6(2):67-73.
Samek O, Telle HH, Beddows DC. Laser-induced breakdown spectroscopy: a tool for real-time, in vitro and in vivo identification of carious teeth. BMC Oral Health. 2001;1(1):1. doi:10.1186/1472-6831-1-1
de Menezes RF, Harvey CM, de Martinez Gerbi MEM, et al. Fs-laser ablation of teeth is temperature limited and provides information about the ablated components. J Biophotonics. 2017;10(10):1292-1304. doi:10.1002/jbio.201700042
Chen X, Li X, Yang S, Yu X, Liu A. Discrimination of lymphoma using laser-induced breakdown spectroscopy conducted on whole blood samples. Biomed Opt Express. 2018;9(3):1057-1068. doi:10.1364/boe.9.001057
Singh S, Badaya S. Laser induced breakdown spectroscopy (LIBS) for cervical cancer screening: The desired destination for the protracted hunt. J Cancer Policy. 2015;5:23-4. doi:10.1016/j.jcpo.2015.06.002
Teran-Hinojosa E, Sobral H, Sanchez-Perez C, Perez-Garcia A, Aleman-Garcia N, Hernandez-Ruiz J. Differentiation of fibrotic liver tissue using laser-induced breakdown spectroscopy. Biomed Opt Express. 2017;8(8):3816-3827. doi:10.1364/boe.8.003816
El-Hussein A, Kassem AK, Ismail H, Harith MA. Exploiting LIBS as a spectrochemical analytical technique in diagnosis of some types of human malignancies. Talanta. 2010;82(2):495- 501. doi:10.1016/j.talanta.2010.04.064
Cremers DA, Radziemski LJ. Handbook of Laser‐Induced Breakdown Spectroscopy. Chichester: Wiley; 2006.
Singh JP, Thakur SN. Laser-Induced Breakdown Spectroscopy. New York: Elsevier; 2007.
Aied Nassef O, Elsayed-Ali H. Spark discharge assisted laser induced breakdown spectroscopy. Spectrochim Acta Part B At Spectrosc. 2005;60(12):1564-1572. doi:10.1016/j. sab.2005.10.010
Li K, Zhou W, Shen Q, Ren Z, Peng B. Laser ablation assisted spark induced breakdown spectroscopy on soil samples. J Anal At Spectrom. 2010;25(9):1475-1481. doi:10.1039/ B922187E
Tereszchuk KA, Vadillo JM, Laserna JJ. Glow-discharge-assisted laser-induced breakdown spectroscopy: increased sensitivity in solid analysis. Appl Spectrosc. 2008;62(11):1262- 1267. doi:10.1366/000370208786401491
Imam H, Mohamed R, Eldakrouri AA. Primary Study of the Use of Laser-Induced Plasma Spectroscopy for the Diagnosis of Breast Cancer. Opt Photonics J. 2012;2(3):193-9. doi:10.4236/opj.2012.23029
Miziolek AW, Palleschi V, Schechter I. Laser-induced breakdown spectroscopy (LIBS): fundamentals and applications. Cambridge: Cambridge University Press; 2006. doi:10.1017/CBO9780511541261
Abdel-Salam ZA, Galmed AH, Tognoni E, Harith MA. Estimation of calcified tissues hardness via calcium and magnesium ionic to atomic line intensity ratio in laser induced breakdown spectra. Spectrochim Acta Part B At Spectrosc. 2007;62(12):1343-1347. doi:10.1016/j.sab.2007.10.033
Kumar A, Yueh FY, Singh JP, Burgess S. Characterization of malignant tissue cells by laser-induced breakdown spectroscopy. Appl Opt. 2004;43(28):5399-5403.
EL Sherbini AM, Hagras MM, Farag HH, Rizk MRM. Diagnosis and classification of liver cancer using libs technique and artificial neural network. Int J Sci Res. 2015;4(5):1153-1158.
Nasiadek M, Krawczyk T, Sapota A. Tissue levels of cadmium and trace elements in patients with myoma and uterine cancer. Hum Exp Toxicol. 2005;24(12):623-630. doi:10.1191/0960327105ht575oa
Nasiadek M, Kilanowicz A, Darago A, Lazarenkow A, Michalska M. The effect of cadmium on the coagulation and fibrinolytic system in women with uterine endometrial cancer and myoma. Int J Occup Med Environ Health. 2013;26(2):291- 301. doi:10.2478/s13382-013-0089-z
Rodriguez C, McCullough ML, Mondul AM, et al. Calcium, dairy products, and risk of prostate cancer in a prospective cohort of United States men. Cancer Epidemiol Biomarkers Prev. 2003;12(7):597-603.
Wysolmerski JJ, Broadus AE. Hypercalcemia of malignancy: the central role of parathyroid hormone-related protein. Annu Rev Med. 1994;45:189-200. doi:10.1146/annurev. med.45.1.189
Lokeshwar BL, Schwartz GG, Selzer MG, et al. Inhibition of prostate cancer metastasis in vivo: a comparison of 1,25-dihydroxyvitamin D (calcitriol) and EB1089. Cancer Epidemiol Biomarkers Prev. 1999;8(3):241-248.
Gupta SK, Shukla VK, Vaidya MP, Roy SK, Gupta S. Serum and tissue trace elements in colorectal cancer. J Surg Oncol. 1993;52(3):172-175.
Kohli GS, Bhargava A, Goel H, et al. Serum magnesium levels in patients with head and neck cancer. Magnesium. 1989;8(2):77-86.
Tansy MF, Kendall MF. Mg and the gastrointestinal tract. Magnesium Bull. 1981;3:55-66.
- Abstract Viewed: 607 times
- PDF Downloaded: 416 times