• Logo
  • SBMUJournals

Muscle Recovery Is Highlighted by IR Laser Therapy

Mohammadreza Razzaghi, Mohammad Rostami-Nejad, Mostafa Rezaei-Tavirani, Mona Zamanian Azodi, Farshad Okhovatian, Vahid Mansouri, Nayebali Ahmadi
64

Views

PDF

Abstract

Introduction:In sports medicine, laser application has been well-established for the recovery of muscles. The mechanisms by which benefits of this kind of therapy can be studied is molecular research approach. Protein-protein interaction network analysis as one of the important complementary studies of proteomics can accelerate this goal by the identification of novel contributing markers.

Methods:By the use of Cytoscape V3.7.1 and its applications, a network of differential expressed proteins (DEPs) from IR laser treatment samples were constructed and analyzed. Six hub-bottlenecks were determined, 4 of which were from differentially expressed proteins.

Results:ClueGO discovered 4 biological processes related to these hub-bottlenecks that their function could alter due to IR laser therapy.

Conclusion:In fact, by the expression changes of hub-bottlenecks including the up-regulation of HSP90s, one of the prominent biological processes in muscle recovery could be activated. This process is called nitric oxide synthase (NOS) activation that could be proposed as one of the underlying mechanisms of IR laser treatments in muscle recovery.

 


Keywords

Infrared (IR) laser; Myoblast, Proteomics; Protein-protein interaction network analysis

References

Depfenhart M, Müller J, inventors; Telesto GmbH, assignee. Laser therapy system with UVA and IR laser light for directional generation of a dermal collagen matrix. United States patent US 9,486,284. 2016 Nov 8.

Shazly TA, Latina MA, inventors; VISUMEDICS Inc, assignee. Diagnostic and surgical laser device utilizing a visible laser diode. United States patent application US 10/016,302. 2018 Jul 10.

Canis M, Ihler F, Martin A, Matthias C, Steiner W. Transoral laser microsurgery for T1a glottic cancer: review of 404 cases. Head neck. 2015;37(6):889-95. doi: 10.1002/hed.23688.

Monici M, Cialdai F, Ranaldi F, Paoli P, Boscaro F, Moneti G, et al. Effect of IR laser on myoblasts: a proteomic study. Mol Biosyst. 2013;9(6):1147-61. doi: 10.1039/c2mb25398d.

Ceylan Y, Hizmetli S, Siliğ Y. The effects of infrared laser and medical treatments on pain and serotonin degradation products in patients with myofascial pain syndrome. A controlled trial. Rheumatol Int. 2004;24(5):260-3. doi: 10.1007/s00296-003-0348-6.

Fried D, Zuerlein M, Featherstone JDB, Seka W, Duhn C, McCormack SM. IR laser ablation of dental enamel: mechanistic dependence on the primary absorber. Appl Surf Sci. 1998;127-129:852-6. doi: 10.1016/S0169-4332(97)00755-1.

Silveira PC, Scheffer Dda L, Glaser V, Remor AP, Pinho RA, Aguiar Junior AS, et al. Low-level laser therapy attenuates the acute inflammatory response induced by muscle traumatic injury. Free Radic Res. 2016;50(5):503-13. doi: 10.3109/10715762.2016.1147649.

Rezaei-Tavirani M, Tavirani MR, Azodi MZ, Farshi HM, Razzaghi MR. Evaluation of skin response after erbium: yttrium–aluminum–garnet laser irradiation: a network analysis approach. J Lasers Med Sci. 2019;10(3):194-99. doi:10.22037/jlms.v10i3.24698.

Safaei A, Rezaei Tavirani M, Zamanian Azodi M, Lashay A, Mohammadi SF, Ghasemi Broumand M, et al. Diabetic retinopathy and laser therapy in rats: A protein-protein interaction network analysis. J Lasers Med Sci. 2017;8(1):S20-21. doi: 10.15171/jlms.2017.s4.

Rostami A, Shahani M, Zarrindast MR, Semnanian S, Rahmati Roudsari M, Rezaei Tavirani M, et al. Effects of 3 Hz and 60 Hz extremely low frequency electromagnetic fields on anxiety-like behaviors, memory retention of passive avoidance and electrophysiological properties of male rats. J Lasers Med Sci. 2016;7(2):120-5. doi: 10.15171/jlms.2016.20.

Szezerbaty SKF, de Oliveira RF, Pires-Oliveira DAA, Soares CP, Sartori D, Poli-Frederico RC. The effect of low-level laser therapy (660 nm) on the gene expression involved in tissue repair. Lasers Med Sci. 2018;33(2):315-21. doi: 10.1007/s10103-017-2375-7.

Rezaie-Tavirani M, Hasanzadeh H, Seyyedi S, Zali H. Proteomic analysis of the effect of extremely low-frequency electromagnetic fields (ELF-EMF) with different intensities in SH-SY5Y neuroblastoma cell line. J Lasers Med Sci. 2017;8(2):79-83. doi: 10.15171/jlms.2017.14.

Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498-504. doi: 10.1101/gr.1239303.

Szklarczyk D, Franceschini A, Kuhn M, Simonovic M, Roth A, Minguez P, et al. The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res. 2011;39(1):D561-D568. doi: 10.1093/nar/gkq973.

Bindea G, Galon J, Mlecnik B. CluePedia Cytoscape plugin: pathway insights using integrated experimental and in silico data. Bioinformatics. 2013;29(5):661-3. doi: 10.1093/bioinformatics/btt019.

Bindea G, Mlecnik B, Hackl H, Charoentong P, Tosolini M, Kirilovsky A, et al. ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics. 2009;25(8):1091-3. doi: 10.1093/bioinformatics/btp101.

Bukau B, Horwich AL. The Hsp70 and Hsp60 chaperone machines. Cell. 1998;92(3):351-66. doi: 10.1016/s0092-8674(00)80928-9.

Mosser DD, Caron AW, Bourget L, Meriin AB, Sherman MY, Morimoto RI, et al. The chaperone function of hsp70 is required for protection against stress-induced apoptosis. Mol Cell Biol. 2000;20(19):7146-59. doi: 10.1128/mcb.20.19.7146-7159.2000.

Harris MB, Mitchell BM, Sood SG, Webb RC, Venema RC. Increased nitric oxide synthase activity and Hsp90 association in skeletal muscle following chronic exercise. Eur J Appl Physiol. 2008;104(5):795-802. doi: 10.1007/s00421-008-0833-4.

Anderson JE. A role for nitric oxide in muscle repair: nitric oxide–mediated activation of muscle satellite cells. Mol Biol Cell. 2000;11(5):1859-74. doi: 10.1091/mbc.11.5.1859.

Rayment I, Holden HM, Whittaker M, Yohn CB, Lorenz M, Holmes KC, et al. Structure of the actin-myosin complex and its implications for muscle contraction. Science. 1993;261(5117):58-65. doi: 10.1126/science.8316858.

Fatigati V, Murphy RA. Actin and tropomyosin variants in smooth muscles. Dependence on tissue type. J Biol Chem. 1984;259(23):14383-8.

Pilegaard H, Ordway GA, Saltin B, Neufer PD. Transcriptional regulation of gene expression in human skeletal muscle during recovery from exercise. Am J Physiol Endocrinol Metab. 2000;279(4):E806-E14. doi: 10.1152/ajpendo.2000.279.4.E806.

Fonseca AS, Mencalha AL, Campos VMA, Ferreira-Machado SC, Peregrino AAF, Magalhães LAG, et al. Low-intensity infrared lasers alter actin gene expression in skin and muscle tissue. Laser Phys. 2012;23(2):025602. doi: 10.1088/1054-660X/23/2/025602.

Seidler NW. GAPDH: Biological Properties and Diversity. Springer; 2013. p. 37-59.

Mesquita-Ferrari RA, Martins MD, Silva JA Jr, da Silva TD, Piovesan RF, Pavesi VCS, et al. Effects of low-level laser therapy on expression of TNF-α and TGF-β in skeletal muscle during the repair process. Lasers Med Sci. 2011;26(3):335-40. doi: 10.1007/s10103-010-0850-5.

Corona BT, Machingal MA, Criswell T, Vadhavkar M, Dannahower AC, Bergman C, et al. Further development of a tissue engineered muscle repair construct in vitro for enhanced functional recovery following implantation in vivo in a murine model of volumetric muscle loss injury. Tissue Eng Part A. 2012;18(11-12):1213-28. doi: 10.1089/ten.TEA.2011.0614.

Stygelbout V, Leroy K, Pouillon V, D'Amico E, Erneux C, Schurmans S, et al. Overexpression of inositol 1, 4, 5-trisphosphate 3-kinase B (Itpkb) in neurons of APP mice leads to an increase of Amyloid Beta production. Alzheimers Dement 2011;7(4):S528-S9. doi: 10.1016/j.jalz.2011.05.1483.




DOI: https://doi.org/10.22037/jlms.v10i4.26757