• Logo
  • SBMUJournals

The Combination of Laser Therapy and Metal Nanoparticles in Cancer Treatment Originated From Epithelial Tissues: A Literature Review

Reza Fekrazad, Nafiseh Naghdi, Hanieh Nokhbatolfoghahaei, Hossein Bagheri
1061

Views

PDF

Abstract

Several methods have been employed for cancer treatment including surgery, chemotherapy and radiation therapy. Today, recent advances in medical science and development of new technologies, have led to the introduction of new methods such as hormone therapy, Photodynamic therapy (PDT), treatments using nanoparticles and eventually combinations of lasers and nanoparticles. The unique features of LASERs such as photo-thermal properties and the particular characteristics of nanoparticles, given their extremely small size, may provide an interesting combined therapeutic effect. The purpose of this study was to review the simultaneous application of lasers and metal nanoparticles for the treatment of cancers with epithelial origin. A comprehensive search in electronic sources including PubMed, Google Scholar and Science Direct was carried out between 2000 and 2013. Among the initial 400 articles, 250 articles applied nanoparticles and lasers in combination, in which more than 50 articles covered the treatment of cancer with epithelial origin. In the future, the combination of laser and nanoparticles may be used as a new or an alternative method for cancer therapy or diagnosis. Obviously, to exclude the effect of laser’s wavelength and nanoparticle’s properties more animal studies and clinical trials are required as a lack of perfect studies.


Keywords

Nanoparticles; Cancer, Therapy-related; Laser.

References

Mitchell R, Kumar V, Fausto N, Abbas AK, Aster J. Robbins & Cotran Pathologic Basis of Disease. Saunders; 2011:260- 262.

Roco MC. Nanotechnology: convergence with modern biology and medicine. Curr Opin Biotechnol. 2003;14(3):337-346.

Raji V, Kumar J, Rejiya CS, Vibin M, Shenoi VN, Abraham A. Selective photothermal efficiency of citrate capped gold nanoparticles for destruction of cancer cells. Exp Cell Res. 2011;317(14):2052-2058. doi:10.1016/j.yexcr.2011.04.010.

Sun X, Zhang G, Patel D, Stephens D, Gobin AM. Targeted cancer therapy by immunoconjugated gold-gold sulfide nanoparticles using Protein G as a cofactor. Ann Biomed Eng. 2012;40(10):2131-2139. doi:10.1007/s10439-012- 0575-7.

Lu BQ, Zhu YJ, Ao HY, Qi C, Chen F. Synthesis and characterization of magnetic iron oxide/calcium silicate mesoporous nanocomposites as a promising vehicle for drug delivery. ACS Appl Mater Interfaces. 2012;4(12):6969- 6974. doi:10.1021/am3021284.

Geng J, Li M, Wu L, Chen C, Qu X. Mesoporous silica nanoparticle-based H2O2 responsive controlled-release system used for Alzheimer’s disease treatment. Adv Healthc Mater. 2012;1(3):332-336. doi:10.1002/adhm.201200067.

Madsen SJ, Baek SK, Makkouk AR, Krasieva T, Hirschberg H. Macrophages as cell-based delivery systems for nanoshells in photothermal therapy. Ann Biomed Eng. 2012;40(2):507-515. doi:10.1007/s10439-011-0415-1.

You J, Zhang R, Zhang G, et al. Photothermal-chemotherapy with doxorubicin-loaded hollow gold nanospheres: A platform for near-infrared light-trigged drug release. J Control Release. 2012;158(2):319-328. doi:10.1016/j. jconrel.2011.10.028

Kennedy LC, Bear AS, Young JK, et al. T cells enhance gold nanoparticle delivery to tumors in vivo. Nanoscale Res Lett. 2011;6(1):283. doi:10.1186/1556-276X-6-283

Goodrich GP, Bao L, Gill-Sharp K, Sang KL, Wang J, Payne JD. Photothermal therapy in a murine colon cancer model using near-infrared absorbing gold nanorods. J Biomed Opt. 2010;15(1):018001. doi:10.1117/1.3290817

Hirsch LR, Stafford RJ, Bankson JA, et al. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci U S A. 2003;100(23):13549-13554. doi:10.1073/pnas.2232479100.

O’Neal DP, Hirsch LR, Halas NJ, Payne JD, West JL. Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett. 2004;209(2):171-176. doi:10.1016/j.canlet.2004.02.004

Zharov VP, Kim JW, Curiel DT, Everts M. Self-assembling nanoclusters in living systems: application for integrated photothermal nanodiagnostics and nanotherapy. Nanomedicine. 2005;1(4):326-345. doi:10.1016/j. nano.2005.10.006.

Huang X, El-Sayed IH, Qian W, El-Sayed MA. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc. 2006;128(6):2115-2120. doi:10.1021/ja057254a

Zharov VP, Galitovskaya EN, Johnson C, Kelly T. Synergistic enhancement of selective nanophotothermolysis with gold nanoclusters: potential for cancer therapy. Lasers Surg Med. 2005;37(3):219-226. doi:10.1002/lsm.20223

Khlebtsov B, Zharov V, Melnikov A, Tuchin V. Optical amplification of photothermal therapy with gold nanoparticles and nanoclusters. Nanotechnology. 2006;17:5167-5179.

Zhang XD, Wu D, Shen X, Liu PX, Fan FY, Fan SJ. In vivo renal clearance, biodistribution, toxicity of gold nanoclusters. Biomaterials. 2012;33(18):4628-4638. doi:10.1016/j.biomaterials.2012.03.020.

Simpson CA, K JS, Cliffel DE, Feldheim DL. In vivo toxicity, biodistribution, and clearance of glutathione-coated gold nanoparticles. Nanomedicine. 2013;9(2):257- 263. doi:10.1016/j.nano.2012.06.002

Jenkins JT, Halaney DL, Sokolov KV, et al. Excretion and toxicity of gold-iron nanoparticles. Nanomedicine. 2013;9(3):356-365. doi:10.1016/j.nano.2012.08.007

Kuo WS, Chang YT, Cho KC, et al. Gold nanomaterials conjugated with indocyanine green for dual-modality photodynamic and photothermal therapy. Biomaterials. 2012;33(11):3270-3278. doi:10.1016/j. biomaterials.2012.01.035.

Kessentini S, Barchiesi D. Quantitative comparison of optimized nanorods, nanoshells and hollow nanospheres for photothermal therapy. Biomed Opt Express. 2012;3(3):590-604. doi:10.1364/BOE.3.000590

Fekrazad R, Hakimiha N, Farokhi E, et al. Treatment of oral squamous cell carcinoma using anti-HER2 immunonanoshells. Int J Nanomedicine. 2011;6:2749-2755. doi:10.2147/IJN.S24548

Day ES, Bickford LR, Slater JH, Riggall NS, Drezek RA, West JL. Antibody-conjugated gold-gold sulfide nanoparticles as multifunctional agents for imaging and therapy of breast cancer. Int J Nanomedicine. 2010;5:445-454.

Botella P, Ortega I, Quesada M, et al. Multifunctional hybrid materials for combined photo and chemotherapy of cancer. Dalton Trans. 2012;41(31):9286-9296. doi:10.1039/ c2dt30381g.

Ma M, Chen H, Chen Y, et al. Au capped magnetic core/ mesoporous silica shell nanoparticles for combined photothermo-/chemo-therapy and multimodal imaging. Biomaterials. 2012;33(3):989-998. doi:10.1016/j. biomaterials.2011.10.017.

Qin G, Li Z, Xia R, et al. Partially polymerized liposomes: stable against leakage yet capable of instantaneous release for remote controlled drug delivery. Nanotechnology. 2011;22(15):155605. doi:10.1088/0957-4484/22/15/155605.

Baek SK, Makkouk AR, Krasieva T, Sun CH, Madsen SJ, Hirschberg H. Photothermal treatment of glioma; an in vitro study of macrophage-mediated delivery of gold nanoshells. J Neurooncol. 2011;104(2):439-448. doi:10.1007/s11060-010-0511-3.

Beqa L, Fan Z, Singh AK, Senapati D, Ray PC. Gold nano-popcorn attached SWCNT hybrid nanomaterial for targeted diagnosis and photothermal therapy of human breast cancer cells. ACS Appl Mater Interfaces. 2011;3(9):3316-3324. doi:10.1021/am2004366.

Melancon MP, Lu W, Zhong M, et al. Targeted multifunctional gold-based nanoshells for magnetic resonance-guided laser ablation of head and neck cancer. Biomaterials. 2011;32(30):7600-7608. doi:10.1016/j. biomaterials.2011.06.039.

Van de Broek B, Devoogdt N, D’Hollander A, et al. Specific cell targeting with nanobody conjugated branched gold nanoparticles for photothermal therapy. ACS Nano. 2011;5(6):4319-4328. doi:10.1021/nn1023363.

Luo YL, Shiao YS, Huang YF. Release of photoactivatable drugs from plasmonic nanoparticles for targeted cancer therapy. ACS Nano. 2011;5(10):7796-7804. doi:10.1021/ nn201592s.

Choi J, Yang J, Jang E, et al. Gold nanostructures as photothermal therapy agent for cancer. Anticancer Agents Med Chem. 2011;11(10):953-964.

Lukianova-Hleb EY, Koneva, II, Oginsky AO, La Francesca S, Lapotko DO. Selective and self-guided micro-ablation of tissue with plasmonic nanobubbles. J Surg Res. 2011;166(1):e3-13. doi:10.1016/j.jss.2010.10.039.

Carpin LB, Bickford LR, Agollah G, et al. Immunoconjugated gold nanoshell-mediated photothermal ablation of trastuzumab-resistant breast cancer cells. Breast Cancer Res Treat. 2011;125(1):27-34. doi:10.1007/s10549-010-0811-5.

Lukianova-Hleb EY, Hanna EY, Hafner JH, Lapotko DO. Tunable plasmonic nanobubbles for cell theranostics. Nanotechnology. 2010;21(8):85102. doi:10.1088/0957- 4484/21/8/085102.

You J, Zhang G, Li C. Exceptionally high payload of doxorubicin in hollow gold nanospheres for near-infrared light-triggered drug release. ACS Nano. 2010;4(2):1033-41. doi:10.1021/nn901181c.

Huang HC, Rege K, Heys JJ. Spatiotemporal temperature distribution and cancer cell death in response to extracellular hyperthermia induced by gold nanorods. ACS Nano. 2010;4(5):2892-2900. doi:10.1021/nn901884d.

Wang S, Chen KJ, Wu TH, et al. Photothermal effects of supramolecularly assembled gold nanoparticles for the targeted treatment of cancer cells. Angew Chem Int Ed Engl. 2010;49(22):3777-3781. doi:10.1002/anie.201000062

Au L, Chen J, Wang LV, Xia Y. Gold nanocages for cancer imaging and therapy. Methods Mol Biol. 2010;624:83-99. doi:10.1007/978-1-60761-609-2_6.

Wang C, Chen J, Talavage T, Irudayaraj J. Gold nanorod/Fe3O4 nanoparticle “nano-pearl-necklaces” for simultaneous targeting, dual-mode imaging, and photothermal ablation of cancer cells. Angew Chem Int Ed Engl. 2009;48(15):2759-2763. doi:10.1002/anie.200805282.

Melancon MP, Lu W, Yang Z, et al. In vitro and in vivo targeting of hollow gold nanoshells directed at epidermal growth factor receptor for photothermal ablation therapy. Mol Cancer Ther. 2008;7(6):1730-1739. doi:10.1158/1535- 7163.MCT-08-0016.

Liu X, Lloyd MC, Fedorenko IV, Bapat P, Zhukov T, Huo Q. Enhanced imaging and accelerated photothermalysis of A549 human lung cancer cells by gold nanospheres. Nanomedicine (Lond). 2008;3(5):617-626. doi:10.2217/17435889.3.5.617.

Bernardi RJ, Lowery AR, Thompson PA, Blaney SM, West JL. Immunonanoshells for targeted photothermal ablation in medulloblastoma and glioma: an in vitro evaluation using human cell lines. J Neurooncol. 2008;86(2):165-172. doi:10.1007/s11060-007-9467-3.

Huang X, Qian W, El-Sayed IH, El-Sayed MA. The potential use of the enhanced nonlinear properties of gold nanospheres in photothermal cancer therapy. Lasers Surg Med. 2007;39(9):747-753. doi:10.1002/lsm.20577.

Stern JM, Stanfield J, Lotan Y, Park S, Hsieh JT, Cadeddu JA. Efficacy of laser-activated gold nanoshells in ablating prostate cancer cells in vitro. J Endourol. 2007;21(8):939- 943. doi:10.1089/end.2007.0437.

El-Sayed IH, Huang X, El-Sayed MA. Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. Cancer Lett. 2006;239(1):129-135. doi:10.1016/j.canlet.2005.07.035.

Lowery AR, Gobin AM, Day ES, Halas NJ, West JL. Immunonanoshells for targeted photothermal ablation of tumor cells. Int J Nanomedicine. 2006;1(2):149-154.

Loo C, Lin A, Hirsch L, et al. Nanoshell-enabled photonics-based imaging and therapy of cancer. Technol Cancer Res Treat. 2004;3(1):33-40.

Xie H, Diagaradjane P, Deorukhkar AA, et al. Integrin alphavbeta3-targeted gold nanoshells augment tumor vasculature-specific imaging and therapy. Int J Nanomedicine. 2011;6:259-269. doi:10.2147/IJN.S15479.

Bardhan R, Lal S, Joshi A, Halas NJ. Theranostic nanoshells: from probe design to imaging and treatment of cancer. Acc Chem Res. 2011;44(10):936-946. doi:10.1021/ar200023x.

Huang HC, Yang Y, Nanda A, Koria P, Rege K. Synergistic administration of photothermal therapy and chemotherapy to cancer cells using polypeptide-based degradable plasmonic matrices. Nanomedicine (Lond). 2011;6(3):459- 473. doi:10.2217/nnm.10.133.

Rylander MN, Stafford RJ, Hazle J, Whitney J, Diller KR. Heat shock protein expression and temperature distribution in prostate tumours treated with laser irradiation and nanoshells. Int J Hyperthermia. 2011;27(8):791-801. doi:1 0.3109/02656736.2011.607485.

Stafford RJ, Shetty A, Elliott AM, Schwartz JA, Goodrich GP, Hazle JD. MR temperature imaging of nanoshell mediated laser ablation. Int J Hyperthermia. 2011;27(8):782-790. doi: 10.3109/02656736.2011.614671.

Melancon MP, Elliott AM, Shetty A, Huang Q, Stafford RJ, Li C. Near-infrared light modulated photothermal effect increases vascular perfusion and enhances polymeric drug delivery. J Control Release. 2011;156(2):265-272. doi:10.1016/j.jconrel.2011.06.030.

Melancon MP, Elliott A, Ji X, et al. Theranostics with multifunctional magnetic gold nanoshells: photothermal therapy and t2* magnetic resonance imaging. Invest Radiol. 2011;46(2):132-140. doi:10.1097/RLI.0b013e3181f8e7d8.

Elsherbini AA, Saber M, Aggag M, El-Shahawy A, Shokier HA. Laser and radiofrequency-induced hyperthermia treatment via gold-coated magnetic nanocomposites. Int J Nanomedicine. 2011;6:2155-2165. doi:10.2147/IJN.S23952.

Wagner DS, Delk NA, Lukianova-Hleb EY, Hafner JH, Farach-Carson MC, Lapotko DO. The in vivo performance of plasmonic nanobubbles as cell theranostic agents in zebrafish hosting prostate cancer xenografts. Biomaterials. 2010;31(29):7567-7574. doi:10.1016/j. biomaterials.2010.06.031.

Sirotkina MA, Elagin VV, Shirmanova MV, et al. OCT-guided laser hyperthermia with passively tumor-targeted gold nanoparticles. J Biophotonics. 2010;3(10-11):718-727. doi:10.1002/jbio.201000061.

Park JH, von Maltzahn G, Ong LL, et al. Cooperative nanoparticles for tumor detection and photothermally triggered drug delivery. Adv Mater. 2010;22(8):880-885. doi:10.1002/adma.200902895.

Elbialy N, Abdelhamid M, Youssef T. Low power argon laser-induced thermal therapy for subcutaneous Ehrlich carcinoma in mice using spherical gold nanoparticles. J Biomed Nanotechnol. 2010;6(6):687-693.

Park JH, von Maltzahn G, Xu MJ, et al. Cooperative nanomaterial system to sensitize, target, and treat tumors. Proc Natl Acad Sci U S A. 2010;107(3):981-986. doi:10.1073/ pnas.0909565107.

Lu W, Xiong C, Zhang G, et al. Targeted photothermal ablation of murine melanomas with melanocyte-stimulating hormone analog-conjugated hollow gold nanospheres. Clin Cancer Res. 2009;15(3):876-886. doi:10.1158/1078-0432.CCR-08-1480.

Stern JM, Stanfield J, Kabbani W, Hsieh JT, Cadeddu JA. Selective prostate cancer thermal ablation with laser activated gold nanoshells. J Urol. 2008;179(2):748-753. doi:10.1016/j.juro.2007.09.018.

Ji X, Shao R, Elliott AM, et al. Bifunctional Gold Nanoshells with a Superparamagnetic Iron Oxide-Silica Core Suitable for Both MR Imaging and Photothermal Therapy. J Phys Chem C Nanomater Interfaces. 2007;111(17):6245. doi:10.1021/jp0702245.

Boca SC, Potara M, Gabudean AM, Juhem A, Baldeck PL, Astilean S. Chitosan-coated triangular silver nanoparticles as a novel class of biocompatible, highly effective photothermal transducers for in vitro cancer cell therapy. Cancer Lett. 2011;311(2):131-140. doi:10.1016/j. canlet.2011.06.022.

Kim JS, Kuk E, Yu KN, et al. Antimicrobial effects of silver nanoparticles. Nanomedicine. 2007;3(1):95-101. doi:10.1016/j.nano.2006.12.001

Sur I, Cam D, Kahraman M, Baysal A, Culha M. Interaction of multi-functional silver nanoparticles with living cells. Nanotechnology. 2010;21(17):175104. doi:10.1088/0957- 4484/21/17/175104.

Liu L, Ni F, Zhang J, et al. Silver nanocrystals sensitize magnetic-nanoparticle-mediated thermo-induced killing of cancer cells. Acta Biochim Biophys Sin (Shanghai). 2011;43(4):316-323. doi:10.1093/abbs/gmr015.

Huang X, Tang S, Liu B, Ren B, Zheng N. Enhancing the photothermal stability of plasmonic metal nanoplates by a core-shell architecture. Adv Mater. 2011;23(30):3420-3425. doi:10.1002/adma.201100905.

Tse C, Zohdy MJ, Ye JY, O’Donnell M, Lesniak W, Balogh L. Enhanced optical breakdown in KB cells labeled with folate-targeted silver-dendrimer composite nanodevices. Nanomedicine. 2011;7(1):97-106. doi:10.1016/j. nano.2010.09.003.

Huang YF, Sefah K, Bamrungsap S, Chang HT, Tan W. Selective photothermal therapy for mixed cancer cells using aptamer-conjugated nanorods. Langmuir. 2008;24(20):11860-11865. doi:10.1021/la801969c.

Hu KW, Huang CC, Hwu JR, Su WC, Shieh DB, Yeh CS. A New Photothermal Therapeutic Agent: Core-Free Nanostructured AuxAg1-x Dendrites. Chem. Eur. J. 2008;14:2956-2964.

Fulvio Ratto, Paolo Matteini, Francesca Rossi, Pini R. Size and shape control in the overgrowth of gold nanorods. J Nanopart Res. 2010;12:2029-2036.

Matteini P, Ratto F, Rossi F, Pini R. Emerging concepts of laser-activated nanoparticles for tissue bonding. J Biomed Opt. 2012;17(1):010701. doi:10.1117/1.JBO.17.1.010701.

Kirui DK, Rey DA, Batt CA. Gold hybrid nanoparticles for targeted phototherapy and cancer imaging. Nanotechnology. 2010;21(10):105105.

Cheng FY, Chen CT, Yeh CS. Comparative efficiencies of photothermal destruction of malignant cells using antibody-coated silica@Au nanoshells, hollow Au/ Ag nanospheres and Au nanorods. Nanotechnology. 2009;20(42):425104.

Abdulla-Al-Mamun M, Kusumoto Y, Mihata A, Islam MS, Ahmmad B. Plasmon-induced photothermal cell-killing effect of gold colloidal nanoparticles on epithelial carcinoma cells. Photochem Photobiol Sci. 2009;8(8):1125- 1129.

Choi WI, Kim JY, Kang C, Byeon CC, Kim YH, Tae G. Tumor regression in vivo by photothermal therapy based on gold-nanorod-loaded, functional nanocarriers. ACS Nano. 2011;5(3):1995-2003.




DOI: https://doi.org/10.22037/jlms.v7i2.11747