Record and Appraisal of Endophytic Tumor Localization Techniques in Minimally Invasive Kidney-Sparing Procedures. A Systematic Review
Urology Journal,
Vol. 19 No. 03 (2022),
6 June 2022
,
Page 161-178
https://doi.org/10.22037/uj.v19i03.7056
Abstract
Purpose: Review and efficacy assessment of techniques used for intraprocedural endophytic renal mass localization.
Materials and Methods: Advanced search was carried out on PubMed, Cochrane Library, Web of Science and Google Scholar databases up to August 2020. Eligibility criteria were set, according to PRISMA statement. OR (95 % CI) for identification or technical success, positive margins and recurrence, were calculated for completely endophytic tumors. Risk of Bias was evaluated using ROBVIS tool.
Results: 77 studies used for result synthesis, including 1,317 endophytic tumors, with 758 of them completely endophytic. 356 endophytic tumors treated laparoscopically and 598 robotically, using ultrasound-based methods, transarterial embolization, dual-source CT, invasive signage, 3D printing, and augmented reality variations. Identification success was 97.8-100%, positive margins 0-12.5 % (completely endophytic: 95 % CI; 0.255-1.971, OR 0.709 in laparoscopic, 95 % CI ; 0.379-3.109, OR 0.086 in robotic partial nephrectomy), recurrences 0-3.9 % (completely endophytic: 0 recurrences in laparoscopic, 95 % CI ; 0.0917-2.25, OR 0.454, in robotic partial nephrectomy), and complications 0-60 % . 363 were treated with ablation techniques using CT-based methods, thermal monitoring, transarterial embolization, ultrasound guidance and invasive signage. Technical success was 33.4-100 % (completely endophytic: 95 % CI ; 0.00157-2.060, OR 0.0569 for invasive and 95 % CI ; 0.598-13.152, OR 2.804 for non-invasive localization techniques) and recurrences were 0-20%.
Conclusion: Ultrasound-based techniques showed acceptable identification success and oncologic outcomes in laparoscopic or robotic setting. Augmented reality, showed no superiority over conventional techniques. Near infrared fluoroscopy with intravenous indocyanine green, was incapable of endophytic tumor tracking, although when administered angiographic, results were promising, along with other embolization techniques. Percutaneous hook-wire or embolization coil signage, aided in safe and successful tracking of parenchymal isoechoic masses, but data are inadequate to assess efficacy. CT-guidance, combined with ultrasound or thermal monitoring, showed increased technical success during thermal ablation, unlike ultrasound guidance that showed poor outcomes.
- Endophytic
- Kidney
- Neoplasms
- Robotic Surgical Procedures
- Laparoscopy
- Ablation Techniques
How to Cite
References
Ljungberg B, Albiges L, Abu-Ghanem Y, et al (2019) European Association of Urology Guidelines on Renal Cell Carcinoma: The 2019 Update. European Urology 75:799–810. https://doi.org/10.1016/j.eururo.2019.02.011
Husain FZ, Badani KK, Sfakianos JP, Mehrazin R (2016) Emerging surgical treatments for renal cell carcinoma. Future Oncology 12:921–929. https://doi.org/10.2217/fon.15.362
Gill IS (2003) Minimally invasive nephron-sparing surgery. Urologic Clinics of North America 30:551–579. https://doi.org/10.1016/S0094-0143(03)00030-2
Withington J, Neves JB, Barod R (2017) Surgical and Minimally Invasive Therapies for the Management of the Small Renal Mass. Current Urology Reports 18:1–9. https://doi.org/10.1007/s11934-017-0705-8
Singla N, Gahan J (2016) New technologies in tumor ablation. Current Opinion in Urology 26:248–253. https://doi.org/10.1097/MOU.0000000000000284
Prins FM, Kerkmeijer LGW, Pronk AA, et al (2017) Renal Cell Carcinoma: Alternative Nephron-Sparing Treatment Options for Small Renal Masses, a Systematic Review. Journal of Endourology 31:963–975. https://doi.org/10.1089/end.2017.0382
Kutikov A, Uzzo RG (2009) The R.E.N.A.L. Nephrometry Score: A Comprehensive Standardized System for Quantitating Renal Tumor Size, Location and Depth. Journal of Urology 182:844–853. https://doi.org/10.1016/j.juro.2009.05.035
Jose M (2009) PICO Worksheet and Search Strategy Name. 2014
Moher D, Liberati A, Tetzlaff J, Altman DG (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Journal of clinical epidemiology 62:1006–1012. https://doi.org/10.1016/j.jclinepi.2009.06.005
McGuinness LA, Higgins JPT (2021) Risk-of-bias VISualization (robvis): An R package and Shiny web app for visualizing risk-of-bias assessments. Research Synthesis Methods 12:55–61. https://doi.org/10.1002/jrsm.1411
Sterne JAC, Hernán MA, Reeves BC, et al (2016) ROBINS-I : a tool for assessing risk of bias in non-randomised studies of interventions (“ Risk Of Bias In Non-randomised tool for evaluating risk of bias in. 4–10. https://doi.org/10.1136/bmj.i4919
Gu L, Liu K, Shen D, et al (2019) Comparison of robot-assisted and laparoscopic partial nephrectomy for completely endophytic renal tumors : a high- volume center experience. 1–25. https://doi.org/10.1089/end.2019.0860
Qin B, Hu H, Lu Y, et al (2018) Intraoperative ultrasonography in laparoscopic partial nephrectomy for intrarenal tumors. PLoS ONE 13:1–9. https://doi.org/10.1371/journal.pone.0195911
Nadu A, Goldberg H, Lubin M, Baniel J (2013) Laparoscopic partial nephrectomy ( LPN ) for totally intrarenal tumours. 82–86. https://doi.org/10.1111/bju.12168
Chung BI, Lee UJ, Kamoi K, et al (2011) Laparoscopic partial nephrectomy for completely intraparenchymal tumors. Journal of Urology 186:2182–2187. https://doi.org/10.1016/j.juro.2011.07.106
Pierro GB Di, Tartaglia N, Aresu L, Polara A (2014) Laparoscopic partial nephrectomy for endophytic hilar tumors : feasibility and outcomes. European Journal of Surgical Oncology 40:769–774. https://doi.org/10.1016/j.ejso.2013.11.023
Gao Y, Chen L, Ning Y, et al (2014) Hydro-Jet-assisted laparoscopic partial nephrectomy with no renal arterial clamping: A preliminary study in a single center. International Urology and Nephrology 46:1289–1293. https://doi.org/10.1007/s11255-014-0670-9
Engel JD, Williams SB (2013) Unclamped hand-assisted laparoscopic partial nephrectomy for predominantly endophytic renal tumors. Urology Journal 10:767–773. https://doi.org/10.22037/uj.v10i1.1970
Venkatesh R, Weld K, Ames CD, et al (2006) Laparoscopic partial nephrectomy for renal masses: Effect of tumor location. Urology 67:1169–1174. https://doi.org/10.1016/j.urology.2006.01.089
Fazio LM, Downey D, Nguan CY, et al (2006) Intraoperative laparoscopic renal ultrasonography: Use in advanced laparoscopic renal surgery. Urology 68:723–727. https://doi.org/10.1016/j.urology.2006.04.022
Shikanov S, Lifshitz DA, Deklaj T, et al (2010) Laparoscopic partial nephrectomy for technically challenging tumours. BJU International 106:91–94. https://doi.org/10.1111/j.1464-410X.2009.09010.x
Lee SY, Choi JD, Seo S Il (2011) Current status of partial nephrectomy for renal mass. Korean Journal of Urology 52:301–309. https://doi.org/10.4111/kju.2011.52.5.301
Yang F, Liu S, Mou L, et al (2019) Application of intraoperative ultrasonography in retroperitoneal laparoscopic partial nephrectomy: A single-center experience of recent 199 cases. Endoscopic Ultrasound 8:118–124. https://doi.org/10.4103/eus.eus-15-19
Sun MRM, Wagner AA, San Francisco IF, et al (2012) Need for intraoperative ultrasound and surgical recommendation for partial nephrectomy: Correlation with tumor imaging features and urologist practice patterns. Ultrasound Quarterly 28:21–27. https://doi.org/10.1097/RUQ.0b013e31824a45f6
Kang N, Niu Y, Zhang J, et al (2012) Intraoperative ultrasonography: A useful tool in retrolaparoscopic nephron-sparing surgery. Urologia Internationalis 88:338–342. https://doi.org/10.1159/000336469
Belldegrun A, Kim H, Landman J, Wolf JS (2004) Intraoperative ultrasonography in urologic oncology. Urologic Oncology: Seminars and Original Investigations 22:153–155. https://doi.org/10.1016/j.urolonc.2004.01.007
Secil M, Elibol C, Aslan G, et al (2011) Role of intraoperative US in the decision for radical or partial nephrectomy. International Braz J Urol 37:277. https://doi.org/10.1590/S1677-55382011000200020
Aron M TB (2009) Laparoscopic partial nephrectomy: Newer trends. Indian J Urol 25:516–22
Anderson JK, Shingleton WB, Cadeddu JA (2006) Imaging Associated with Percutaneous and Intraoperative Management of Renal Tumors. Urologic Clinics of North America 33:339–352. https://doi.org/10.1016/j.ucl.2006.03.005
Shao P, Tang L, Li P, et al (2012) Precise segmental renal artery clamping under the guidance of dual-source computed tomography angiography during laparoscopic partial nephrectomy. European Urology 62:1001–1008. https://doi.org/10.1016/j.eururo.2012.05.056
Fan G, Li J, Li M, et al (2018) Three-Dimensional Physical Model-Assisted Planning and Navigation for Laparoscopic Partial Nephrectomy in Patients with Endophytic Renal Tumors. Scientific Reports 8:4–9. https://doi.org/10.1038/s41598-017-19056-5
Mandoorah Q, Rozet F, Muttin F, et al (2018) Hook Wire Placement Facilitates Laparoscopic Excision of Endophytic Renal Tumor in Partial Nephrectomy. Journal of Endourology Case Reports 4:163–165. https://doi.org/10.1089/cren.2018.0054
Kouriefs C, Georgiades F, Michaelides M, et al (2019) Percutaneous hook wire assistance during laparoscopic excision of an intrarenal mass. Annals of the Royal College of Surgeons of England 101:E136–E138. https://doi.org/10.11.
Bouvier A, Besnier L, Paisant A, et al (2020) Blue dye embolization of renal tumor: A new technique to improve tumor localization during laparoscopic partial nephrectomy. Journal of Laparoendoscopic and Advanced Surgical Techniques 30:299–303. https://doi.org/10.1089/lap.2019.0686
Hughes-Hallett A, Mayer EK, Marcus HJ, et al (2014) Augmented reality partial nephrectomy: Examining the current status and future perspectives. Urology 83:266–273. https://doi.org/10.1016/j.urology.2013.08.049
Mitchell CR, Herrell SD (2014) Image-Guided Surgery and Emerging Molecular Imaging: Advances to Complement Minimally Invasive Surgery. Urologic Clinics of North America 41:567–580. https://doi.org/10.1016/j.ucl.2014.07.011
Simpfendörfer T, Gasch C, Hatiboglu G, et al (2016) Intraoperative Computed Tomography Imaging for Navigated Laparoscopic Renal Surgery: First Clinical Experience. Journal of Endourology 30:1105–1111. https://doi.org/10.1089/end.2016.0385
Teber D, Guven S, Simpfendörfer T, et al (2009) Augmented Reality: A New Tool To Improve Surgical Accuracy during Laparoscopic Partial Nephrectomy? Preliminary In Vitro and In Vivo Results. European Urology 56:332–338. https://doi.org/10.1016/j.eururo.2009.05.017
Rassweiler J, Rassweiler MC, Müller M, et al (2014) Surgical navigation in urology: European perspective. Current Opinion in Urology 24:81–97. https://doi.org/10.1097/MOU.0000000000000014
Hekman MCH, Rijpkema M, Langenhuijsen JF, et al (2018) Intraoperative Imaging Techniques to Support Complete Tumor Resection in Partial Nephrectomy. European Urology Focus 4:960–968. https://doi.org/10.1016/j.euf.kouriefs.04.008
Chen Y, Li H, Wu D, et al (2014) Surgical planning and manual image fusion based on 3D model facilitate laparoscopic partial nephrectomy for intrarenal tumors. World Journal of Urology 32:1493–1499. https://doi.org/10.1007/s00345-013-1222-0
Wang J, Lu Y, Wu G, et al (2019) The role of three-dimensional reconstruction in laparoscopic partial nephrectomy for complex renal tumors. World Journal of Surgical Oncology 17:1–7. https://doi.org/10.1186/s12957-019-1701-x
Zhang S, Yang G, Tang L, et al (2019) Application of a Functional3-dimensional Perfusion Model in Laparoscopic Partial Nephrectomy With Precise Segmental Renal Artery Clamping. Urology 125:98–103. https://doi.org/10.1016/j.urology.2018.12.023
Wang D, Zhang B, Yuan X, et al (2015) Preoperative planning and real-time assisted navigation by three-dimensional individual digital model in partial nephrectomy with three-dimensional laparoscopic system. International Journal of Computer Assisted Radiology and Surgery 10:1461–1468. https://doi.org/10.1007/s11548-015-1148-7
Hernández JAB, Donoso CV, Martinez-Sarmiento M, et al (2017) Application of the Radio-Guided Occult Lesion Localization Technique for Renal Lumpectomy: From the Laboratory to the Patient. Clinical Nuclear Medicine 42:e467–e468. https://doi.org/10.1097/RLU.0000000000001811
Perez-Ardavin J, Sanchez-Gonzalez JV, Martinez-Sarmiento M, et al (2019) Surgical Treatment of Completely Endophytic Renal Tumor: a Systematic Review. Current Urology Reports 20:. https://doi.org/10.1007/s11934-019-0864-x
Arora S, Rogers C (2018) Partial Nephrectomy in Central Renal Tumors. Journal of Endourology 32:S63–S67. https://doi.org/10.1089/end.2018.0046
Di Cosmo G, Verzotti E, Silvestri T, et al (2018) Intraoperative ultrasound in robot-assisted partial nephrectomy: State of the art. Archivio Italiano di Urologia e Andrologia 90:195–198. https://doi.org/10.4081/aiua.2018.3.195
Gunelli R, Fiori M, Salaris C, et al (2016) The role of intraoperative ultrasound in small renal mass robotic enucleation. Archivio italiano di urologia, andrologia : organo ufficiale [di] Societa italiana di ecografia urologica e nefrologica 88:311–313. https://doi.org/10.4081/aiua.2016.4.311
Kara O, Maurice MJ, Malkoc E, et al (2016) Comparison of robot-assisted and open partial nephrectomy for completely endophytic renal tumours: a single centre experience. BJU International 118:946–951. https://doi.org/10.1111/bju.13572
Curtiss KM, Ball MW, Gorin MA, et al (2015) Perioperative outcomes of robotic partial nephrectomy for intrarenal tumors. Journal of Endourology 29:293–296. https://doi.org/10.1089/end.2014.0348
Boylu U, Basatac C, Yildirim U, et al (2015) Comparison of surgical, functional, and oncological outcomes of open and robot-assisted partial nephrectomy. Journal of Minimal Access Surgery 11:72–77. https://doi.org/10.4103/0972-9941.147699
Autorino R, Khalifeh A, Laydner H, et al (2014) Robot-assisted partial nephrectomy (RAPN) for completely endophytic renal masses: A single institution experience. BJU International 113:762–768. https://doi.org/10.1111/bju.12455
Kaczmarek BF, Sukumar S, Kumar RK, et al (2013) Comparison of robotic and laparoscopic ultrasound probes for robotic partial nephrectomy. Journal of Endourology 27:1137–1140. https://doi.org/10.1089/end.2012.0528
Kim EH, Tanagho YS, Sandhu GS, et al (2012) Off-clamp robot-assisted partial nephrectomy for complex renal tumors. Journal of Endourology 26:1177–1182. https://doi.org/10.1089/end.2012.0353
Kaczmarek BF, Sukumar S, Petros F, et al (2013) Robotic ultrasound probe for tumor identification in robotic partial nephrectomy: Initial series and outcomes. International Journal of Urology 20:172–176. https://doi.org/10.1111/j.1442-2042.2012.03127.x
White MA, Haber GP, Autorino R, et al (2011) Outcomes of robotic partial nephrectomy for renal masses with nephrometry score of ≥7. Urology 77:809–813. https://doi.org/10.1016/j.urology.2010.12.005
Gong Y, Du C, Josephson DY, et al (2010) Four-arm robotic partial nephrectomy for complex renal cell carcinoma. World Journal of Urology 28:111–115. https://doi.org/10.1007/s00345-009-0427-8
Ho H, Schwentner C, Neururer R, et al (2009) Robotic-assisted laparoscopic partial nephrectomy: Surgical technique and clinical outcomes at 1 year. BJU International 103:663–668. https://doi.org/10.1111/j.1464-410X.2008.08060.x
Rogers CG, Singh A, Blatt AM, et al (2008) Robotic Partial Nephrectomy for Complex Renal Tumors: Surgical Technique. European Urology 53:514–523. https://doi.org/10.1016/j.eururo.2007.09.047
Hyams ES, Perlmutter M, Stifelman MD (2011) A prospective evaluation of the utility of laparoscopic doppler technology during minimally invasive partial nephrectomy. Urology 77:617–620. https://doi.org/10.1016/j.urology.2010.05.011
Shiroki R, Fukami N, Fukaya K, et al (2016) Robot-assisted partial nephrectomy: Superiority over laparoscopic partial nephrectomy. International Journal of Urology 23:122–131. https://doi.org/10.1111/iju.13001
Abdel Raheem A, Chang KD, Alenzi MJ, et al (2019) Robot-assisted partial nephrectomy for totally endophytic renal tumors: Step by step standardized surgical technique and long-term outcomes with a median 59-month follow-up. Journal of Laparoendoscopic and Advanced Surgical Techniques 29:1–11. https://doi.org/10.1089/lap.2018.0124
Komninos C, Shin TY, Tuliao P, et al (2014) Robotic partial nephrectomy for completely endophytic renal tumors: Complications and functional and oncologic outcomes during a 4-year median period of follow-up. Urology 84:1367–1373. https://doi.org/10.1016/j.urology.2014.08.012
Harke NN, Mandel P, Witt JH, et al (2018) Are there limits of robotic partial nephrectomy? TRIFECTA outcomes of open and robotic partial nephrectomy for completely endophytic renal tumors. Journal of Surgical Oncology 118:206–211. https://doi.org/10.1002/jso.25103
Tiryaki S, Turna B, Kısmalı E, Ulman İ (2019) Robotic partial nephrectomy in a child with kidney tumor. Turkish Journal of Urology 45:S188–S191. https://doi.org/10.5152/tud.2018.52028
Ceccarelli G, Codacci-Pisanelli M, Patriti A, et al (2013) Robotic-assisted transperitoneal nephron-sparing surgery for small renal masses with associated surgical procedures: Surgical technique and preliminary experience. Updates in Surgery 65:183–190. https://doi.org/10.1007/s13304-013-0209-0
Alenezi1*† A, Motiwala1 A, Eves1 S, et al (2016) Robotic assisted laparoscopic partial nephrectomy using contrast-enhanced ultrasound scan to map renal blood flow. Int J Med Robotics Comput Assist Surg. https://doi.org/10.1002/rcs.1738
Rao AR, Gray R, Mayer E, et al (2013) Occlusion angiography using intraoperative contrast-enhanced ultrasound scan (CEUS): A novel technique demonstrating segmental renal blood supply to assist zero-ischaemia robot-assisted partial nephrectomy. European Urology 63:913–919. https://doi.org/10.1016/j.eururo.2012.10.034
Simone G, Tuderti G, Anceschi U, et al (2019) “Ride the Green Light”: Indocyanine Green–marked Off-clamp Robotic Partial Nephrectomy for Totally Endophytic Renal Masses. European Urology 75:1008–1014. https://doi.org/10.1016/j.eururo.2018.09.015
Veccia A, Antonelli A, Hampton LJ, et al (2020) Near-infrared Fluorescence Imaging with Indocyanine Green in Robot-assisted Partial Nephrectomy: Pooled Analysis of Comparative Studies. European Urology Focus 6:505–512. https://doi.org/10.1016/j.euf.2019.03.005
Cacciamani GE, Shakir A, Tafuri A, et al (2020) Best practices in near-infrared fluorescence imaging with indocyanine green (NIRF/ICG)-guided robotic urologic surgery: a systematic review-based expert consensus. World Journal of Urology 38:883–896. https://doi.org/10.1007/s00345-019-02870-z
Porpiglia F, Fiori C, Checcucci E, et al (2018) Hyperaccuracy Three-dimensional Reconstruction Is Able to Maximize the Efficacy of Selective Clamping During Robot-assisted Partial Nephrectomy for Complex Renal Masses. European Urology 74:651–660. https://doi.org/10.1016/j.eururo.2017.12.027
Porpiglia F, Checcucci E, Amparore D, et al (2020) Three-dimensional Augmented Reality Robot-assisted Partial Nephrectomy in Case of Complex Tumours (PADUA ≥10): A New Intraoperative Tool Overcoming the Ultrasound Guidance. European Urology 78:229–238. https://doi.org/10.1016/j.eururo.2019.11.024
Pratt P, Mayer E, Vale J, et al (2012) An effective visualisation and registration system for image-guided robotic partial nephrectomy. Journal of Robotic Surgery 6:23–31. https://doi.org/10.1007/s11701-011-0334-z
Nosrati MS, Amir-Khalili A, Peyrat JM, et al (2016) Endoscopic scene labelling and augmentation using intraoperative pulsatile motion and colour appearance cues with preoperative anatomical priors. International Journal of Computer Assisted Radiology and Surgery 11:1409–1418. https://doi.org/10.1007/s11548-015-1331-x
Lasser MS, Doscher M, Keehn A, et al (2012) Virtual surgical planning: A novel aid to robot-assisted laparoscopic partial nephrectomy. Journal of Endourology 26:1372–1379. https://doi.org/10.1089/end.2012.0093
Furukawa1 J, Miyake1* H, Tanaka1 K, et al (2014) Console-integrated real-time three-dimensional image overlay navigation for robot-assisted partial nephrectomy with selective arterial clamping: early single-centre experience with 17 cases. Int J Med Robotics Comput Assist Surg 10:385–390. https://doi.org/10.1002/rcs.1574
Reeves JJ, Forauer A, Seigne JD, Hyams ES (2015) Image-Guided Embolization Coil Placement for Identification of an Endophytic, Isoechoic Renal Mass During Robotic Partial Nephrectomy. Journal of Endourology Case Reports 1:59–61. https://doi.org/10.1089/cren.2015.0022
Krane LS, Manny TB, Hemal AK (2012) Is near infrared fluorescence imaging using indocyanine green dye useful in robotic partial nephrectomy: A prospective comparative study of 94 patients. Urology 80:110–118. https://doi.org/10.1016/j.urology.2012.01.076
Angell JE, Khemees TA, Abaza R (2013) Optimization of near infrared fluorescence tumor localization during robotic partial nephrectomy. Journal of Urology 190:1668–1673. https://doi.org/10.1016/j.juro.2013.04.072
Amit Gupta, M.D., M.P.H., 1 Jay D. Raman, M.D., 1 Raymond J. Leveillee, M.D. 2, Marshall S. Wingo, M.D., 2 Ilia S. Zeltser, M.D., 1 Yair Lotan, M.D., 1 Clayton Trimmer, D.O. 3, Joshua M. Stern, M.D., 1 and Jeffrey A. Cadeddu MD (2009) General Anesthesia and Contrast-Enhanced Computed Tomography to Optimize Renal Percutaneous Radiofrequency Ablation: Multi-Institutional Intermediate-Term Results. JOURNAL OF ENDOUROLOGY 23:1099–1105. https://doi.org/10.1089/end.2008.0499
Gervais DA, McGovern FJ, Arellano RS, et al (2005) Radiofrequency ablation of renal cell carcinoma: Part I, indications, results, and role in patient management over a 6-year period and ablation of 100 tumors. American Journal of Roentgenology 185:64–71. https://doi.org/10.2214/ajr.185.1.01850064
Farrell MA, Charboneau WJ, DiMarco DS, et al (2003) Imaging-guided radiofrequency ablation of solid renal tumors. American Journal of Roentgenology 180:1509–1513. https://doi.org/10.2214/ajr.180.6.1801509
Matsumoto ED, Watumull L, Johnson DB, et al (2004) The radiographic evolution of radio frequency ablated renal tumors. Journal of Urology 172:45–48. https://doi.org/10.1097/01.ju.0000132124.01060.0c
Pietryga JA, Beland MD, Dupuy DE, Mayo-Smith WW (2012) Placement of marker coils at biopsy: Usefulness in the localization of poorly visualized renal neoplasms for subsequent CT-guided radiofrequency ablation. Radiology 263:555–561. https://doi.org/10.1148/radiol.12111430
Veltri A, De Fazio G, Malfitana V, et al (2004) Percutaneous US-guided RF thermal ablation for malignant renal tumors: Preliminary results in 13 patients. European Radiology 14:2303–2310. https://doi.org/10.1007/s00330-004-2413-2
Sommer CM, Pallwein-Prettner L, Vollherbst DF, et al (2017) Transarterial embolization (TAE) as add-on to percutaneous radiofrequency ablation (RFA) for the treatment of renal tumors: Review of the literature, overview of state-of-the-art embolization materials and further perspective of advanced image-guided tumo. European Journal of Radiology 86:143–162. https://doi.org/10.1016/j.ejrad.2016.10.024
Jacomides L, Ogan K, Watumull L, Cadeddu JA (2003) Laparoscopic application of radio frequency energy enables in situ renal tumor ablation and partial nephrectomy. Journal of Urology 169:49–53. https://doi.org/10.1016/S0022-5347(05)64032-3
Zeltser IS, Moonat S, Park S, et al (2008) Intermediate-term prospective results of radiofrequency-assisted laparoscopic partial nephrectomy: A non-ischaemic coagulative technique. BJU International 101:36–38. https://doi.org/10.1111/j.1464-410X.2007.07176.x
Nadler RB, Perry KT, Smith ND (2009) Hybrid Laparoscopic and Robotic Ultrasound-guided Radiofrequency Ablation-assisted Clampless Partial Nephrectomy. Urology 74:202–205. https://doi.org/10.1016/j.urology.2008.08.498
Young EE, Castle SM, Gorbatiy V, Leveillee RJ (2012) Comparison of safety, renal function outcomes and efficacy of laparoscopic and percutaneous radio frequency ablation of renal masses. Journal of Urology 187:1177–1182. https://doi.org/10.1016/j.juro.2011.11.099
Wingo MS, Leveillee RJ (2008) Central and deep renal tumors can be effectively ablated: Radiofrequency ablation outcomes with fiberoptic peripheral temperature monitoring. Journal of Endourology 22:1261–1267. https://doi.org/10.1089/end.2008.0135
Yang R, Lian H, Zhang G, et al (2014) Laparoscopic radiofrequency ablation with intraoperative contrast-enhanced ultrasonography for T1bN0M0 renal tumors: Initial functional and oncologic outcomes. Journal of Endourology 28:4–9. https://doi.org/10.1089/end.2013.0397
Wu SD, Viprakasit DP, Cashy J, et al (2010) Radiofrequency ablation-assisted robotic laparoscopic partial nephrectomy without renal hilar vessel clamping versus laparoscopic partial nephrectomy: A comparison of perioperative outcomes. Journal of Endourology 24:385–391. https://doi.org/10.1089/end.2009.0199
Murray CA, Welch BT, Schmit GD, et al (2019) Safety and Efficacy of Percutaneous Image-guided Cryoablation of Completely Endophytic Renal Masses. Urology 133:151–156. https://doi.org/10.1016/j.urology.2019.08.005
Azevedo AAP, Rahal A, Falsarella PM, et al (2018) Image-guided percutaneous renal cryoablation: Five years experience, results and follow-up. European Journal of Radiology 100:14–22. https://doi.org/10.1016/j.ejrad.2018.01.001
Permpongkosol S, Link RE, Kavoussi LR, Solomon SB (2006) Percutaneous Computerized Tomography Guided Cryoablation for Localized Renal Cell Carcinoma: Factors Influencing Success. Journal of Urology 176:1963–1968. https://doi.org/10.1016/j.juro.2006.07.040
Atwell TD, Farrell MA, Leibovich BC, et al (2008) Percutaneous Renal Cryoablation: Experience Treating 115 Tumors. Journal of Urology 179:2136–2141. https://doi.org/10.1016/j.juro.2008.01.144
Michimoto K, Shimizu K, Kameoka Y, et al (2016) Transcatheter Arterial Embolization with a Mixture of Absolute Ethanol and Iodized Oil for Poorly Visualized Endophytic Renal Masses Prior to CT-Guided Percutaneous Cryoablation. CardioVascular and Interventional Radiology 39:1589–1594. https://doi.org/10.1007/s00270-016-1414-2
Kajiwara K, Yoshimatsu R, Nishimori M, et al (2020) Efficacy of arterial infusion of iodized oil on CT-guided cryoablation for renal cell carcinoma. Minimally Invasive Therapy and Allied Technologies 0:1–7. https://doi.org/10.1080/13645706.2020.1734622
Harmon TS, Matteo J, Meyer TE, Kee-Sampson J (2018) Pre-cryoablation Embolization of Renal Tumors: Decreasing Probes and Saving Loads. Cureus 10:. https://doi.org/10.7759/cureus.3676
Wright AD, Turk TMT, Nagar MS, et al (2007) Endophytic lesions: A predictor of failure in laparoscopic renal cryoablation. Journal of Endourology 21:1493–1496. https://doi.org/10.1089/end.2007.9850
Adam C. Mues, Zhamshid Okhunov, Georgios Haramis, H. D’Agostino Bruce W. Shingleton JL (2010) Comparison of Percutaneous and Laparoscopic Renal Cryoablation for Small (<3.0 cm) Renal Masses. JOURNAL OF ENDOUROLOGY 24:1097–1100. https://doi.org/10.1089/end.2010.0067
Derweesh IH, Malcolm JB, Diblasio CJ, et al (2008) Single center comparison of laparoscopic cryoablation and CT-guided percutaneous cryoablation for renal tumors. Journal of Endourology 22:2461–2467. https://doi.org/10.1089/end.2008.0196
Yu J, Liang P, Yu XL, et al (2012) US-guided percutaneous microwave ablation of renal cell carcinoma: Intermediate-term results. Radiology 263:900–908. https://doi.org/10.1148/radiol.12111209
Zhou W, Uppot RN, Feldman AS, Arellano RS (2017) Percutaneous image-guided thermal ablation for multifocal renal cell carcinoma: 10-year experience at a single center. American Journal of Roentgenology 209:733–739. https://doi.org/10.2214/AJR.17.18290
Zhou W, Arellano RS (2018) Thermal Ablation of T1c Renal Cell Carcinoma: A Comparative Assessment of Technical Performance, Procedural Outcome, and Safety of Microwave Ablation, Radiofrequency Ablation, and Cryoablation. Journal of Vascular and Interventional Radiology 29:943–951. https://doi.org/10.1016/j.jvir.2017.12.020
Zhou W, Herwald SE, McCarthy C, et al (2019) Radiofrequency Ablation, Cryoablation, and Microwave Ablation for T1a Renal Cell Carcinoma: A Comparative Evaluation of Therapeutic and Renal Function Outcomes. Journal of Vascular and Interventional Radiology 30:1035–1042. https://doi.org/10.1016/j.jvir.2018.12.013
Diehl SJ, Rathmann N, Kostrzewa M, et al (2016) Irreversible Electroporation for Surgical Renal Masses in Solitary Kidneys: Short-Term Interventional and Functional Outcome. Journal of Vascular and Interventional Radiology 27:1407–1413. https://doi.org/10.1016/j.jvir.2016.03.044
Ritchie RW, Leslie T, Phillips R, et al (2010) Extracorporeal high intensity focused ultrasound for renal tumours: A 3-year follow-up. BJU International 106:1004–1009. https://doi.org/10.1111/j.1464-410X.2010.09289.x
Checcucci E, De Cillis S, Porpiglia F (2020) 3D-printed models and virtual reality as new tools for image-guided robot-assisted nephron-sparing surgery: A systematic review of the newest evidences. Current Opinion in Urology 30:55–64. https://doi.org/10.1097/MOU.0000000000000686
Bertolo R, Hung A, Porpiglia F, et al (2020) Systematic review of augmented reality in urological interventions: the evidences of an impact on surgical outcomes are yet to come. World Journal of Urology 38:2167–2176. https://doi.org/10.1007/s00345-019-02711-z
Kim DK, Komninos C, Kim L, Rha KH (2015) Robot-assisted Partial Nephrectomy for Endophytic Tumors. Current Urology Reports 16:1–7. https://doi.org/10.1007/s11934-015-0552-4
Hemal AK, Golijanin D (2012) Does infrared imaging improve partial nephrectomy for renal cell carcinoma? Journal of Urology 188:1078–1080. https://doi.org/10.1016/j.juro.2012.07.098
Tobis S, Knopf J, Silvers C, et al (2011) Near infrared fluorescence imaging with robotic assisted laparoscopic partial nephrectomy: Initial clinical experience for renal cortical tumors. Journal of Urology 186:47–52. https://doi.org/10.1016/j.juro.2011.02.2701
Tobis S, Knopf JK, Silvers C, et al (2012) Robot-assisted and laparoscopic partial nephrectomy with near infrared fluorescence imaging. Journal of Endourology 26:797–802. https://doi.org/10.1089/end.2011.0604
Klaassen Z, Li Q, Madi R, Terris MK (2014) The role of indocyanine green for robotic partial nephrectomy: Early results, limitations and future directions. Robotics 3:281–288. https://doi.org/10.3390/robotics3030281
Autorino R, Zargar H, White WM, et al (2014) Current applications of near-infrared fluorescence imaging in robotic urologic surgery: A systematic review and critical analysis of the literature. Urology 84:751–759. https://doi.org/10.1016/j.urology.2014.05.059
Matsumoto ED, Johnson DB, Ogan K, et al (2005) Short-term efficacy of temperature-based radiofrequency ablation of small renal tumors. Urology 65:877–881. https://doi.org/10.1016/j.urology.2004.12.011
Nisbet AA, Rieder JM, Tran VQ, et al (2009) Decision tree for laparoscopic partial nephrectomy versus laparoscopic renal cryoablation for small renal masses. Journal of Endourology 23:431–437. https://doi.org/10.1089/end.2008.0228
Goldberg SN, Charboneau JW, Dodd GD, et al (2003) Image-guided tumor ablation: Proposal for standardization of terms and reporting criteria. Radiology 228:335–345. https://doi.org/10.1148/radiol.2282021787
- Abstract Viewed: 122 times
- 7056/pdf Downloaded: 117 times