The Positive Effect of Atropa belladonna on Inflammatory Cytokines in the Animal Model of Multiple Sclerosis
International Clinical Neuroscience Journal,
Vol. 10 No. 1 (2023),
15 January 2023
,
Page e10
Abstract
Background: Multiple sclerosis (MS) is a chronic autoimmune disease characterized by inflammation and demyelination of the central nervous system. Given the role of inflammation in the pathogenesis of MS and the anti-inflammatory effect of Atropa belladonna (AB), the aim of this study was to determine the effect of AB on inflammatory and anti-inflammatory factors in MOG35-55 induced experimental autoimmune encephalomyelitis (EAE).
Methods: Thirty-two purebred C57BL/6 mice, weighing (20 ± 2g) were randomly assigned to the 4 groups: control, and three experimental groups: EAE, EAE + AB100, and EAE + AB300 that after EAE induction received 0, 100, and 300 mg/kg AB daily. AB was dissolved in PBS (phosphate-buffered saline) and the volume of gavage in all groups was 100 μL. After 30 days, the mice were weighed, anesthetized with ether and blood was collected directly from the heart. Specific animal ELISA kits measured the inflammatory cytokines (IL-10, IL-17, IL-4, and TNF-α). One-way ANOVA with Duncan post hoc test was used for comparison between groups.
Results: EAE increased serum concentrations of TNF-α, IL-17, and decreased IL-10 and IL-4 compared to the control group. AB significantly decreased the mean level of TNF-α, IL-17 and increased IL-10 and IL-4 compared with EAE group. The effect of 300 mg/kg was clearly better than 100 mg/kg. There was also a significant difference between the control group and the 300 mg/kg group.
Conclusion: In the present study, AB plant extract increased serum levels of anti-inflammatory cytokines and decreased pro-inflammatory cytokines in the MS animal model.
- Atropa belladonna; Experimental; Autoimmune; Encephalomyelitis; Inflammation; Mice; Multiple sclerosis.
How to Cite
References
Lassmann H, van Horssen J. The molecular basis of neurodegeneration in multiple sclerosis. FEBS Lett. 2011;585(23):3715-23. doi: 10.1016/j.febslet.2011.08.004.
Panitch HS, Hirsch RL, Schindler J, Johnson KP. Treatment of multiple sclerosis with gamma interferon: exacerbations associated with activation of the immune system. Neurology. 1987;37(7):1097-102. doi: 10.1212/wnl.37.7.1097.
Gandhi R, Laroni A, Weiner HL. Role of the innate immune system in the pathogenesis of multiple sclerosis. J Neuroimmunol. 2010;221(1-2):7-14. doi: 10.1016/j. jneuroim.2009.10.015.
Steinman L. Multiple sclerosis: a coordinated immunological attack against myelin in the central nervous system. Cell. 1996;85(3):299-302. doi: 10.1016/s0092-8674(00)81107-1.
Fletcher JM, Lalor SJ, Sweeney CM, Tubridy N, Mills KH. T cells in multiple sclerosis and experimental autoimmune encephalomyelitis. Clin Exp Immunol. 2010;162(1):1-11. doi: 10.1111/j.1365-2249.2010.04143.x.
Frischer JM, Bramow S, Dal-Bianco A, Lucchinetti CF, Rauschka H, Schmidbauer M, et al. The relation between inflammation and neurodegeneration in multiple sclerosis brains. Brain. 2009;132(Pt 5):1175-89. doi: 10.1093/brain/ awp070.
Danikowski KM, Jayaraman S, Prabhakar BS. Regulatory T cells in multiple sclerosis and myasthenia gravis. J Neuroinflammation. 2017;14(1):117. doi: 10.1186/s12974- 017-0892-8.
Jadidi-Niaragh F, Mirshafiey A. Th17 cell, the new player of neuroinflammatory process in multiple sclerosis. Scand J Immunol. 2011;74(1):1-13. doi: 10.1111/j.1365- 3083.2011.02536.x.
Zandi-Esfahan S, Fazeli M, Shaygannejad V, Hasheminia J, Badihian S, Aghayerashti M, et al. Evaluating the effect of adding fish oil to fingolimod on TNF-α, IL1β, IL6, and IFN-γ in patients with relapsing-remitting multiple sclerosis: a double-blind randomized placebo-controlled trial. Clin Neurol Neurosurg. 2017;163:173-8. doi: 10.1016/j. clineuro.2017.10.004.
Lim SY, Constantinescu CS. TNF-α: a paradigm of paradox and complexity in multiple sclerosis and its animal models. Open Autoimmun J. 2010;2(1):160-70.
Ozenci V, Kouwenhoven M, Huang YM, Kivisäkk P, Link H. Multiple sclerosis is associated with an imbalance between tumour necrosis factor-alpha (TNF-alpha)- and IL-10- secreting blood cells that is corrected by interferon-beta (IFN-beta) treatment. Clin Exp Immunol. 2000;120(1):147-53. doi: 10.1046/j.1365-2249.2000.01175.x.
Imitola J, Chitnis T, Khoury SJ. Cytokines in multiple sclerosis: from bench to bedside. Pharmacol Ther. 2005;106(2):163-77. doi: 10.1016/j.pharmthera.2004.11.007.
Saraiva M, O’Garra A. The regulation of IL-10 production by immune cells. Nat Rev Immunol. 2010;10(3):170-81. doi: 10.1038/nri2711.
Perrella O, Sbreglia C, Perrella M, Spetrini G, Gorga F, Pezzella M, et al. Interleukin-10 and tumor necrosis factor-alpha: model of immunomodulation in multiple sclerosis. Neurol Res. 2006;28(2):193-5. doi: 10.1179/016164105x39879.
Sedaghat S, Hajiaghaee R, Taghizad Farid R, Kadkhoda Z, Ghasemi SV, Naghdi Badi HA, et al. Identification and determination of different alkaloids from Atropa belladonna L. by gas chromatography method. J Med Herb. 2011;2(3):203- 10. [Persian].
Sarker SD, Nahar L. An introduction to natural products isolation. Methods Mol Biol. 2012;864:1-25. doi: 10.1007/978-1-61779-624-1_1.
Rajput H. Effects of Atropa belladonna as an anti-cholinergic. Nat Prod Chem Res. 2013;1(1):104. doi: 10.4172/ npcr.1000104.
Miraldi E, Masti A, Ferri S, Barni Comparini I. Distribution of hyoscyamine and scopolamine in Datura stramonium. Fitoterapia. 2001;72(6):644-8. doi: 10.1016/s0367- 326x(01)00291-x.
Razani-Boroujerdi S, Behl M, Hahn FF, Pena-Philippides JC, Hutt J, Sopori ML. Role of muscarinic receptors in the regulation of immune and inflammatory responses. J Neuroimmunol. 2008;194(1-2):83-8. doi: 10.1016/j. jneuroim.2007.11.019.
Owais F, Anwar S, Saeed F, Muhammad S, Ishtiaque S, Mohiuddin O. Analgesic, anti-inflammatory and neuropharmacological effects of Atropa belladonna. Pak J Pharm Sci. 2014;27(6):2183-7.
Ferreira RA, Silva CK, Lucinda-Silva RM, Branco JO. Leaf morphoanatomy of Solanum capsicoides All. (Solanaceae) from Restinga area. Lat Am J Pharm. 2013;32(2):287-91.
Gál P, Vasilenko T, Kováč I, Kostelníková M, Jakubčo J, Szabo P, et al. Atropa belladonna L. water extract: modulator of extracellular matrix formation in vitro and in vivo. Physiol Res. 2012;61(3):241-50. doi: 10.33549/physiolres.932223.
Skundric DS, Zakarian V, Dai R, Lisak RP, Tse HY, James J. Distinct immune regulation of the response to H-2b restricted epitope of MOG causes relapsing-remitting EAE in H-2b/s mice. J Neuroimmunol. 2003;136(1-2):34-45. doi: 10.1016/ s0165-5728(03)00005-5.
Hauser SL, Oksenberg JR. The neurobiology of multiple sclerosis: genes, inflammation, and neurodegeneration. Neuron. 2006;52(1):61-76. doi: 10.1016/j. neuron.2006.09.011.
Begolka WS, Vanderlugt CL, Rahbe SM, Miller SD. Differential expression of inflammatory cytokines parallels progression of central nervous system pathology in two clinically distinct models of multiple sclerosis. J Immunol. 1998;161(8):4437- 46.
Karpus WJ, Gould KE, Swanborg RH. CD4 + suppressor cells of autoimmune encephalomyelitis respond to T cell receptor-associated determinants on effector cells by interleukin-4 secretion. Eur J Immunol. 1992;22(7):1757-63. doi: 10.1002/ eji.1830220714.
Cua DJ, Hinton DR, Stohlman SA. Self-antigen-induced Th2 responses in experimental allergic encephalomyelitis (EAE)- resistant mice. Th2-mediated suppression of autoimmune disease. J Immunol. 1995;155(8):4052-9.
Shaw MK, Lorens JB, Dhawan A, DalCanto R, Tse HY, Tran AB, et al. Local delivery of interleukin 4 by retrovirus-transduced T lymphocytes ameliorates experimental autoimmune encephalomyelitis. J Exp Med. 1997;185(9):1711-4. doi: 10.1084/jem.185.9.1711.
Liblau R, Steinman L, Brocke S. Experimental autoimmune encephalomyelitis in IL-4-deficient mice. Int Immunol. 1997;9(5):799-803. doi: 10.1093/intimm/9.5.799.
Begolka WS, Miller SD. Cytokines as intrinsic and exogenous regulators of pathogenesis in experimental autoimmune encephalomyelitis. Res Immunol. 1998;149(9):771-81. doi: 10.1016/s0923-2494(99)80004-2.
Bettelli E, Das MP, Howard ED, Weiner HL, Sobel RA, Kuchroo VK. IL-10 is critical in the regulation of autoimmune encephalomyelitis as demonstrated by studies of IL-10- and IL-4-deficient and transgenic mice. J Immunol. 1998;161(7):3299-306.
Issazadeh S, Ljungdahl A, Höjeberg B, Mustafa M, Olsson T. Cytokine production in the central nervous system of Lewis rats with experimental autoimmune encephalomyelitis: dynamics of mRNA expression for interleukin-10, interleukin-12, cytolysin, tumor necrosis factor alpha and tumor necrosis factor beta. J Neuroimmunol. 1995;61(2):205- 12. doi: 10.1016/0165-5728(95)00100-g.
Issazadeh S, Lorentzen JC, Mustafa MI, Höjeberg B, Müssener A, Olsson T. Cytokines in relapsing experimental autoimmune encephalomyelitis in DA rats: persistent mRNA expression of proinflammatory cytokines and absent expression of interleukin-10 and transforming growth factor-beta. J Neuroimmunol. 1996;69(1-2):103-15. doi: 10.1016/0165- 5728(96)00076-8.
Issazadeh S, Navikas V, Schaub M, Sayegh M, Khoury S. Kinetics of expression of costimulatory molecules and their ligands in murine relapsing experimental autoimmune encephalomyelitis in vivo. J Immunol. 1998;161(3):1104-12.
Arnett HA, Mason J, Marino M, Suzuki K, Matsushima GK, Ting JP. TNF alpha promotes proliferation of oligodendrocyte progenitors and remyelination. Nat Neurosci. 2001;4(11):1116-22. doi: 10.1038/nn738.
Moseley TA, Haudenschild DR, Rose L, Reddi AH. Interleukin-17 family and IL-17 receptors. Cytokine Growth Factor Rev. 2003;14(2):155-74. doi: 10.1016/s1359- 6101(03)00002-9.
Komiyama Y, Nakae S, Matsuki T, Nambu A, Ishigame H, Kakuta S, et al. IL-17 plays an important role in the development of experimental autoimmune encephalomyelitis. J Immunol. 2006;177(1):566-73. doi: 10.4049/jimmunol.177.1.566.
- Abstract Viewed: 250 times
- PDF Downloaded: 305 times