A Novel Spike-Wave Discharge Detection Framework Based on the Morphological Characteristics of Brain Electrical Activity Phase Space in an Animal Model
International Clinical Neuroscience Journal,
Vol. 8 No. 4 (2021),
30 October 2021
,
Page 180-187
Abstract
Background: Animal models of absence epilepsy are widely used in childhood absence epilepsy studies. Absence seizures appear in the brain’s electrical activity as a specific spike wave discharge (SWD) pattern. Reviewing long-term brain electrical activity is time-consuming and automatic methods are necessary. On the other hand, nonlinear techniques such as phase space are effective in brain electrical activity analysis. In this study, we present a novel SWD-detection framework based on the geometrical characteristics of the phase space.
Methods: The method consists of the following steps: (1) Rat stereotaxic surgery and cortical electrode implantation, (2) Long-term brain electrical activity recording, (3) Phase space reconstruction, (4) Extracting geometrical features such as volume, occupied space, and curvature of brain signal trajectories, and (5) Detecting SDWs based on the thresholding method. We evaluated the approach with the accuracy of the SWDs detection method.
Results: It has been demonstrated that the features change significantly in transition from a normal state to epileptic seizures. The proposed approach detected SWDs with 98% accuracy.
Conclusion: The result supports that nonlinear approaches can identify the dynamics of brain electrical activity signals.
- Absence epilepsy
- EEG
- WAG/Rij
- Animal model
- Phase space
- Geometrical features
How to Cite
References
van Luijtelaar G, Sitnikova E, Littjohann A. On the origin and suddenness of absences in genetic absence models. Clin EEG Neurosci. 2011;42(2):83-97. doi: 10.1177/155005941104200209.
Kelly KM. Spike-wave discharges: absence or not, a common finding in common laboratory rats. Epilepsy Curr. 2004;4(5):176-7. doi: 10.1111/j.1535-7597.2004.04503.x.
Danober L, Deransart C, Depaulis A, Vergnes M, Marescaux C. Pathophysiological mechanisms of genetic absence epilepsy in the rat. Prog Neurobiol. 1998;55(1):27- 57. doi: 10.1016/s0301-0082(97)00091-9.
Van Hese P, Martens JP, Waterschoot L, Boon P, Lemahieu I. Automatic detection of spike and wave discharges in the EEG of genetic absence epilepsy rats from Strasbourg. IEEE Trans Biomed Eng. 2009;56(3):706-17. doi: 10.1109/ tbme.2008.2008858.
Luders HO, Noachtar S. Atlas of epileptic seizures and syndromes. AJNR Am J Neuroradiol. 2001;22(10):1976.
Buteneers P, Schrauwen B, Verstraeten D, Stroobandt D. Real-time epileptic seizure detection on intra-cranial rat data using reservoir computing. In: Köppen M, Kasabov N, Coghill G, eds. International Conference on Neural Information Processing. Berlin, Heidelberg: Springer; 2008.
Casillas-Espinosa PM, Sargsyan A, Melkonian D, O’Brien TJ. A universal automated tool for reliable detection of seizures in rodent models of acquired and genetic epilepsy. Epilepsia. 2019;60(4):783-91. doi: 10.1111/epi.14691.
Andrade P, Paananen T, Ciszek R, Lapinlampi N, Pitkänen A. Algorithm for automatic detection of spontaneous seizures in rats with post-traumatic epilepsy. J Neurosci Methods. 2018;307:37-45. doi: 10.1016/j.jneumeth.2018.06.015.
Westerhuis F, Van Schaijk W, Van Luijtelaar G. Automatic detection of spike-wave discharges in the cortical EEG of rats. In: Spruijt B, Mos J, Noldus L, Sams-Dodd F, van der Staay FJ, eds. Measuring Behavior ‘96, International Workshop on Methods and Techniques in Behavioral Research. Wageningen: Noldus Information Technology; 1996.
Sitnikova E, Hramov AE, Koronovsky AA, van Luijtelaar G. Sleep spindles and spike-wave discharges in EEG: Their generic features, similarities and distinctions disclosed with Fourier transform and continuous wavelet analysis. J Neurosci Methods. 2009;180(2):304-16. doi: 10.1016/j. jneumeth.2009.04.006.
Fanselow EE, Reid AP, Nicolelis MA. Reduction of pentylenetetrazole-induced seizure activity in awake rats by seizure-triggered trigeminal nerve stimulation. J Neurosci. 2000;20(21):8160-8. doi: 10.1523/ jneurosci.20-21-08160.2000.
Wijayanto I, Hartanto R, Nugroho HA. Higuchi and Katz Fractal Dimension for Detecting Interictal and Ictal State in Electroencephalogram Signal. In: 2019 11th International Conference on Information Technology and Electrical Engineering (ICITEE). Pattaya, Thailand: IEEE; 2019. doi: 10.1109/iciteed.2019.8929940.
Jirka J, Prauzek M, Krejcar O, Kuca K. Automatic epilepsy detection using fractal dimensions segmentation and GP-SVM classification. Neuropsychiatr Dis Treat. 2018;14:2439-49. doi: 10.2147/ndt.s167841.
Preißl H, Lutzenberger W, Pulvermüller F, Birbaumer N. Fractal dimensions of short EEG time series in humans. Neurosci Lett. 1997;225(2):77-80. doi: 10.1016/s0304- 3940(97)00192-4.
Arunkumar N, Kumar KR, Venkataraman V. Entropy features for focal EEG and non focal EEG. J Comput Sci. 2018;27:440-4. doi: 10.1016/j.jocs.2018.02.002.
Zhao Q, Jiang H, Hu B, Li Y, Zhong N, Li M, et al. Nonlinear dynamic complexity and sources of resting-state EEG in abstinent heroin addicts. IEEE Trans Nanobioscience. 2017;16(5):349-55. doi: 10.1109/tnb.2017.2705689.
Silva C, Pimentel IR, Andrade A, Foreid JP, Ducla-Soares E. Correlation dimension maps of EEG from epileptic absences. Brain Topogr. 1999;11(3):201-9.
Eagleman SL, Vaughn DA, Drover DR, Drover CM, Cohen MS, Ouellette NT, et al. Do complexity measures of frontal EEG distinguish loss of consciousness in geriatric patients under anesthesia? Front Neurosci. 2018;12:645. doi: 10.3389/fnins.2018.00645.
Namazi H, Jafari S. Age-based variations of fractal structure of EEG signal in patients with epilepsy. Fractals. 2018;26(4):1850051. doi: 10.1142/s0218348x18500512.
Wang Q, Li Y, Liu X. Analysis of feature fatigue EEG signals based on wavelet entropy. Intern J Pattern Recognit Artif Intell. 2018;32(8):1854023. doi: 10.1142/ s021800141854023x.
Kang J, Chen H, Li X, Li X. EEG entropy analysis in autistic children. J Clin Neurosci. 2019;62:199-206. doi: 10.1016/j. jocn.2018.11.027.
Liang Z, Wang Y, Sun X, Li D, Voss LJ, Sleigh JW, et al. EEG entropy measures in anesthesia. Front Comput Neurosci. 2015;9:16. doi: 10.3389/fncom.2015.00016.
Srinivasan V, Eswaran C, Sriraam N. Approximate entropy-based epileptic EEG detection using artificial neural networks. IEEE Trans Inf Technol Biomed. 2007;11(3):288- 95. doi: 10.1109/titb.2006.884369.
Yakovleva TV, Kutepov IE, Karas AY, Yakovlev NM, Dobriyan VV, Papkova IV, et al. EEG analysis in structural focal epilepsy using the methods of nonlinear dynamics (Lyapunov exponents, Lempel-Ziv complexity, and multiscale entropy). ScientificWorldJournal. 2020;2020:8407872. doi: 10.1155/2020/8407872.
Kutepov IE, Dobriyan VV, Zhigalov MV, Stepanov MF, Krysko AV, Yakovleva TV, et al. EEG analysis in patients with schizophrenia based on Lyapunov exponents. Inform Med Unlocked. 2020;18:100289. doi: 10.1016/j. imu.2020.100289.
Dahal P, Avagyan M, Skardal PS, Blaise HJ, Ning T. Characterizing chaotic behavior of REM sleep EEG using Lyapunov exponent. In: 2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI). Shanghai, China: IEEE; 2017. doi: 10.1109/cisp-bmei.2017.8302215.
Hekmatmanesh A, Asl RM, Wu H, Handroos H. EEG control of a bionic hand with imagination based on chaotic approximation of largest Lyapunov exponent: a single trial BCI application study. IEEE Access. 2019;7:105041-53. doi: 10.1109/access.2019.2932180.
Webber C, Marwan N. Recurrence Quantification Analysis: Theory and Best Practices. Cham: Springer; 2015.
Webber CL Jr, Zbilut JP. Recurrence quantification
analysis of nonlinear dynamical systems. Tutorials in Contemporary Nonlinear Methods for the Behavioral Sciences. 2005;94(2005):26-94.
Lashkari S, Sheikhani A, Hashemi Golpayegan MR, Moghimi A, Kobravi H. Topological feature extraction of nonlinear signals and trajectories and its application in EEG signals classification. Turk J Elec Eng Comp Sci. 2018;26(3):1329-42. doi: 10.3906/elk-1708-59.
Lashkari S, Sheikhani A, Hashemi Golpayegani MR, Moghimi A, Kobravi H. Detection and prediction of absence seizures based on nonlinear analysis of the EEG in Wag/Rij animal model. Int Clin Neurosci J. 2018;5(1):21-7. doi: 10.15171/icnj.2018.05.
Paxinos G, Watson C. The Rat Brain in Stereotaxic Coordinates: Hard Cover Edition. Elsevier; 2006.
Younessi Heravi MA, Maghooli K, Nowshiravan Rahatabad F, Rezaee R. Application of a neural interface for restoration of leg movements: intra-spinal stimulation using brain electrical activity in spinally injured rabbits. J Appl Biomed. 2020;18(2-3):33-40. doi: 10.32725/jab.2020.009.
Younessi Heravi MA, Pishghadam M, Raoufian H, Gazerani A. Recurrence quantification analysis of electrooculography signal to a control question test: a new approach for the detection of deception. Biomed Eng Appl Basis Commun. 2020;32(4):2050029. doi: 10.4015/ s1016237220500295.
Kennel MB, Brown R, Abarbanel HD. Determining embedding dimension for phase-space reconstruction using a geometrical construction. Phys Rev A. 1992;45(6):3403- 11. doi: 10.1103/physreva.45.3403.
Fraser AM, Swinney HL. Independent coordinates for strange attractors from mutual information. Phys Rev A Gen Phys. 1986;33(2):1134-40. doi: 10.1103/physreva.33.1134.
Hopfengärtner R, Kasper BS, Graf W, Gollwitzer S, Kreiselmeyer G, Stefan H, et al. Automatic seizure detection in long-term scalp EEG using an adaptive thresholding technique: a validation study for clinical routine. Clin Neurophysiol. 2014;125(7):1346-52. doi: 10.1016/j. clinph.2013.12.104.
Rössler OE. An equation for continuous chaos. Phys Lett A. 1976;57(5):397-8. doi: 10.1016/0375-9601(76)90101-8.
Jandó G, Siegel RM, Horváth Z, Buzsáki G. Pattern recognition of the electroencephalogram by artificial neural networks. Electroencephalogr Clin Neurophysiol. 1993;86(2):100-9. doi: 10.1016/0013-4694(93)90082-7.
Xanthopoulos P, Liu CC, Zhang J, Miller ER, Nair SP, Uthman BM, et al. A robust spike and wave algorithm for detecting seizures in a genetic absence seizure model. In: 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Minneapolis, MN, USA: IEEE; 2009. doi: 10.1109/iembs.2009.5334941.
Van Hese P, Vanrumste B, Hallez H, Carroll GJ, Vonck K, Jones RD, Bones PJ, D’Asseler Y, Lemahieu I. Detection of focal epileptiform events in the EEG by spatio-temporal dipole clustering. Clin Neurophysiol 2008; 119:1756–1770.
Pablo M.C, Sargsyan, A., Melkonian, D., & O’Brien, T. J. A universal automated tool for reliable detection of seizures in rodent models of acquired and genetic epilepsy. Epilepsia. 2019; 60(4): 783-791.
Pedro A, Tomi P, Robert C, Niina L, Asla P. Algorithm for automatic detection of spontaneous seizures in rats with post-traumatic epilepsy, J Neurosci Methods. 2018; Sep 1: 30, 37-45. doi: 10.1016/j.jneumeth.2018.06.015.
- Abstract Viewed: 154 times
- PDF Downloaded: 186 times