The Synergistic Effect of Co-delivery of Anticancer Drugs Into Astrocytes Isolated From Human Glioblastoma Multiforme
International Clinical Neuroscience Journal,
Vol. 7 No. 4 (2020),
28 September 2020
,
Page 185-189
Abstract
Background: Chemotherapy drugs are not effective in the treatment of primary brain tumors due to the low efficacy of these drugs and drug transfer from the blood-brain barrier (BBB) toward the tumor site. Our purpose in this study was to assess the co-delivery of anticancer drugs to increase drug permeability from BBB.
Methods: In this study, two chemotherapy drugs, namely methotrexate (MTX) and paclitaxel (PTX), were inserted into polyvinyl alcohol and poloxamer188-conjugated nanoparticles (NPs). Astrocytes were treated with different concentrations of 0-50 μg/ml from MTX, PTX, the MTX-PTX mixture, PTX-loaded NPs, MTX-loaded NPs, and PTX-MTX co-loaded NPs for 48 hours. The tumoricidal effect was assessed using the survival rate, Hoechst staining, and western blotting.
Results: The results indicated significant reduction of the survival rate in astrocytes treated with PTX-MTX co-loaded NPs. In addition, apoptosis hallmarks consisting of fragmented DNA, overexpression of Bax, and expression reduction of Bcl-2 were in the cultured astrocytes.
Conclusions: Our study proposes that the PTX-MTX co-delivery to NPs could be used as a possible approach for anti-cancer drug delivery to glioblastoma multiforme.
- Paclitaxel
- Methotrexate
- PEGylated nanoparticle
- PLGA
- Drugs co-delivery
- Synergistic effect
- Apoptosis
- Glioblastoma multiforme
- Anticancer drugs
How to Cite
References
Liu A, Hou C, Chen H, Zong X, Zong P. Genetics and epigenetics of glioblastoma: applications and overall incidence of IDH1 mutation. Front Oncol. 2016;6:16. doi: 10.3389/fonc.2016.00016.
Xin H, Sha X, Jiang X, Zhang W, Chen L, Fang X. Anti-glioblastoma efficacy and safety of paclitaxel-loading Angiopep-conjugated dual targeting PEG-PCL nanoparticles. Biomaterials. 2012;33(32):8167-76. doi: 10.1016/j. biomaterials.2012.07.046.
Yue J, Liu S, Wang R, Hu X, Xie Z, Huang Y, et al. Transferrin-conjugated micelles: enhanced accumulation and antitumor effect for transferrin-receptor-overexpressing cancer models. Mol Pharm. 2012;9(7):1919-31. doi: 10.1021/mp300213g.
Ojima I. Modern molecular approaches to drug design and discovery. Acc Chem Res. 2008;41(1):2-3. doi: 10.1021/ ar700158c.
Kreuter J. Nanoparticulate systems for brain delivery of drugs. Adv Drug Deliv Rev. 2001;47(1):65-81. doi: 10.1016/s0169- 409x(00)00122-8.
Hillaireau H, Couvreur P. Nanocarriers’ entry into the cell: relevance to drug delivery. Cell Mol Life Sci. 2009;66(17):2873- 96. doi: 10.1007/s00018-009-0053-z.
Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces. 2010;75(1):1-18. doi: 10.1016/j. colsurfb.2009.09.001.
Cui Y, Xu Q, Chow PK, Wang D, Wang CH. Transferrin-conjugated magnetic silica PLGA nanoparticles loaded with doxorubicin and paclitaxel for brain glioma treatment. Biomaterials. 2013;34(33):8511-20. doi: 10.1016/j. biomaterials.2013.07.075.
Guo J, Gao X, Su L, Xia H, Gu G, Pang Z, et al. Aptamer-functionalized PEG-PLGA nanoparticles for enhanced anti-glioma drug delivery. Biomaterials. 2011;32(31):8010-20. doi: 10.1016/j.biomaterials.2011.07.004.
Lehár J, Krueger AS, Avery W, Heilbut AM, Johansen LM, Price ER, et al. Synergistic drug combinations tend to improve therapeutically relevant selectivity. Nat Biotechnol. 2009;27(7):659-66. doi: 10.1038/nbt.1549.
Wang H, Zhao Y, Wu Y, Hu YL, Nan K, Nie G, et al. Enhanced anti-tumor efficacy by co-delivery of doxorubicin and paclitaxel with amphiphilic methoxy PEG-PLGA copolymer nanoparticles. Biomaterials. 2011;32(32):8281-90. doi: 10.1016/j.biomaterials.2011.07.032.
Danhier F, Lecouturier N, Vroman B, Jérôme C, Marchand- Brynaert J, Feron O, et al. Paclitaxel-loaded PEGylated PLGA-based nanoparticles: in vitro and in vivo evaluation. J Control Release. 2009;133(1):11-7. doi: 10.1016/j. jconrel.2008.09.086.
Musmade KP, Deshpande PB, Musmade PB, Maliyakkal MN, Kumar AR, Reddy MS, et al. Methotrexate-loaded biodegradable nanoparticles: preparation, characterization and evaluation of its cytotoxic potential against U-343 MGa human neuronal glioblastoma cells. Bull Mater Sci. 2014;37(4):945-51. doi: 10.1007/s12034-014-0030-5.
Singla AK, Garg A, Aggarwal D. Paclitaxel and its formulations. Int J Pharm. 2002;235(1-2):179-92. doi: 10.1016/s0378- 5173(01)00986-3.
Scagliotti GV, Selvaggi G. Antimetabolites and cancer: emerging data with a focus on antifolates. xpert Opin Ther Pat. 2006;16(2):189-200. doi: 10.1517/13543776.16.2.189.
Begley DJ. ABC transporters and the blood-brain barrier. Curr Pharm Des. 2004;10(12):1295-312. doi: 10.2174/1381612043384844.
Kim JY, Choi WI, Kim YH, Tae G. Brain-targeted delivery of protein using chitosan- and RVG peptide-conjugated, pluronic-based nano-carrier. Biomaterials. 2013;34(4):1170- 8. doi: 10.1016/j.biomaterials.2012.09.047.
Santander-Ortega MJ, Csaba N, González L, Bastos-González D, Ortega-Vinuesa JL, Alonso MJ. Protein-loaded PLGA–PEO blend nanoparticles: encapsulation, release and degradation characteristics. Colloid Polym Sci. 2010;288(2):141-50. doi: 10.1007/s00396-009-2131-z.
Zhou J, Atsina KB, Himes BT, Strohbehn GW, Saltzman WM. Novel delivery strategies for glioblastoma. Cancer J. 2012;18(1):89-99. doi: 10.1097/PPO.0b013e318244d8ae.
Karim R, Palazzo C, Evrard B, Piel G. Nanocarriers for the treatment of glioblastoma multiforme: current state-of-the-art. J Control Release. 2016;227:23-37. doi: 10.1016/j. jconrel.2016.02.026.
des Rieux A, Fievez V, Garinot M, Schneider YJ, Préat V. Nanoparticles as potential oral delivery systems of proteins and vaccines: a mechanistic approach. J Control Release. 2006;116(1):1-27. doi: 10.1016/j.jconrel.2006.08.013.
Saad M, Garbuzenko OB, Minko T. Co-delivery of siRNA and an anticancer drug for treatment of multidrug-resistant cancer. Nanomedicine (Lond). 2008;3(6):761-76. doi: 10.2217/17435889.3.6.761
- Abstract Viewed: 188 times
- PDF Downloaded: 252 times