The Investigation of Alpha-Tubulin Differential Expression in Oligodendroglioma Brain Tumor Aiming MALDI-TOF-TOF
International Clinical Neuroscience Journal,
Vol. 6 No. 2 (2019),
29 June 2019
,
Page 53-58
Abstract
Background: Tubulin is known as a heterodimer protein, which includes alpha and beta tubulin subunits. This structural protein plays important roles in pathogenesis and healing different diseases. Biomarkers help in fast and accurate detection of cancer. Proteomic studies can be useful both in biological and clinical research, also help obtain protein expression profiles by using two-dimensional electrophoresis, mass spectrometry, and bioinformatics tools. Finding candidate proteins as cancer biomarkers is an interesting area in proteomic investigations.
Methods: In the present study, the total protein content of healthy cells of the brain and brain tumor cells were extracted, purified and quantified by Bradford assay. Two-dimensional electrophoresis used for protein separation followed by statistical analysis. Primary protein detection was performed based on the differences in isoelectric pH, the molecular weight of proteins and protein data banks, which was further confirmed by Matrix Assisted Laser Desorption Ionisation-Time-of-Flight (MALDI-TOF-TOF).
Results: In this study, an alpha-tubulin expression found changed (overexpression) in Oligodendroglioma tumors comparing control identified by proteomics analysis. Also, alpha-tubulin position showed in the oligodendroglioma tumors cluster diagram.
Conclusion: Proteome analysis approach has allowed biology and medical studies. Alpha-tubulin introduced as a candidate biomarker for the diagnosis and prediction of oligodendroglioma tumors.
- Alpha-Tubulin
- Oligodendroglioma
- MALDI-TOF-TOF
- Proteomics.
How to Cite
References
Okamoto H, Li J, Gläsker S, Vortmeyer AO, Jaffe H, Robison RA, et al. Proteomic comparison of oligodendrogliomas with and without 1pLOH. Cancer Biol Ther, 2007; 6(3): 391-396. PMID: 17264672.
Khaghani-Razi-Abad S, Hashemi M, Pooladi M, Entezari M, Kazemi, E. Proteomics analysis of human brain glial cell oligodandroglioma proteome by 2D gel. Gene. 2015; 569: 77-82. doi: 10.4103/0019-509X.138271.
Azarakhsh F, Changizi V, Pooladi, M. Evaluation of the role of metabolites in the diagnosis of the brain tumors using the MRS of the intensified nuclear magnet. JPS. 2015; 6(2): 72-78.
4 Deighton RF, McGregor R, Kemp J, McCulloch J, & Whittle IR. Glioma pathophysiology: insights emerging from proteomics. Brain Pathol. 2010; 20(4): 691-703. doi: 10.1111/j.1750-3639.2010.00376.x.
Pooladi M, Khaghani–Razi-Abad S, Nazarian N, Firouzi-Dalvand L, Hooshiyar M. Altered expression of Isocitrate Dehydrogenases1 in astrocytoma (III and IV) and oligodendroglioma (III) brain tumors. JPP. 2014; 5(1): 55-64.
Hashemi M, Pooladi M, Khaghani-Razi-Abad S. The investigation of changes in proteins expression (Apo Lipoprotein A1 and Albumin) in malignant astrocytoma brain tumor. J Cancer Res Ther. 2014; 10(1): 107-112. doi: 10.4103/0973-1482.131413.
bromberg JE, Van-Den-Bent MJ. Oligodendrogliomas: molecular biology and treatment. Oncologist. 2009; 14(2): 155-163. doi: 10.1634/theoncologist.2008-0248.
Park CK, Kim JH, Moon MJ, Jung JH, Lim SY, Park SH, et al. (2008). Investigation of molecular factors associated with malignant transformation of oligodendroglioma by proteomic study of a single case of rapid tumor progression. J Cancer Res Clin Oncol. 2008; 134(2): 255-262. doi: 10.1007/s00432-007-0282-1.
Grzendowski M, Wolter M, Riemenschneider MJ, Knobbe CB, Schlegel U, Meyer HE, et al. Differential proteome analysis of human gliomas stratified for loss of heterozygosity on chromosomal arms 1p and 19q. Neuro Oncol. 2010; 12(3): 243-256. doi: 10.1093/neuonc/nop025.
Rostomily RC, Born DE, Beyer RP, Jin J, Alvord ECJR, Mikheev AM, et al. Quantitative proteomic analysis of oligodendrogliomas with and without 1p/19q deletion. J Proteome Res. 2010; 9(5): 2610-2618. doi: 10.1021/pr100054v
Whittle IR, Short DM, Deighton RF, Kerr LE, Smith C, McCulloch J. Proteomics analysis of gliomas. Br J Neurosurg. 2007; 21(6): 576-582. doi: 10.1080/02688690701721691
Pinard, P. V., Wang, F., Angelett, I., Horwitz, S. B., & Orr, G. A. (2008). Tubulin proteomics in cancer. Cancer drug discovery and development, 193-210.
Westermann D, Weber K. Post-translational modifications regulate microtubule function. Nat Rev Mol Cell Biol. 2003; 4(12): 938-947. doi: 10.1038/nrm1260
Seeds NW, Maccioni RB. Proteins from morphologically differentiated neuroblastoma cells promote tubulin polymerization. J Cell Biol. 1978; 76(2): 547-555. PMID: 10605456
Fellous A, Francon J, Lennon AM, Nunez J. Microtubule assembly in vitro. Purification of assembly-promoting factors. Eur J Biochem. 1977; 78(1): 167-174. PMID: 913395
Tseng CY, Mane JY, Winter P, Johnson L, Huzil T, Izbicka E, et al. Quantitative analysis of the effect of tubulin isotype expression on sensitivity of cancer cell lines to a set of novel colchicine derivatives. Mol Cancer. 2010; 9: 131. doi: 10.1186/1476-4598-9-131
Derry WB, Wilson L, Khan LA, Luduena RF, Jordan MA. Taxol differentially modulates the dynamics of microtubules assembled from unfractionated and purified beta-tubulin isotypes. Biochemistry. 1997; 36(12): 3554-3562. doi: 10.1021/bi962724m
Staff NP, Podratz JL, Grassner L, Bader M, Paz J, Knight AN, et al.Bortezomib alters microtubule polymerization and axonal transport in rat dorsal root ganglion neurons. Neurotoxicology 2013; 39: 124-131. doi: 10.1016/j.neuro.2013.09.001.
Barlan K, Lu W, Gelfand VI. The microtubule-binding protein ensconsin is an essential cofactor of kinesin-1. Current Biology. 2013; 23(4): 317-322. doi: 10.1016/j.cub.2013.01.008.
Calligaris D, Verdier-Pinard P, Devred F, Villard C, Braguer D, Lafitte D. Microtubule targeting agents: from biophysics to proteomics. Cell Mol Life Sci. 2010; 67(7): 1089-104. doi: 10.1007/s00018-009-0245-6.
Piperno G, Fuller, MT. Monoclonal antibodies specific for an acetylated form of alpha-tubulin recognize the antigen in cilia and flagella from a variety of organisms. J Cell Biol. 1985; 101(6): 2085-2094. PMID: 2415535.
Berges R, Balzeau J, Takahashi M, Prevost C, Eyer J. Structure-function analysis of the glioma targeting NFL-TBS.40-63 peptide corresponding to the tubulin-binding site on the light neurofilament subunit. PLoS One. 2012;7(11): e49436. doi: 10.1371/journal.pone.0049436.
Efrat A, Hoffmann F, Kriegel K, Schultz C, Wenk C. Geometric algorithms for the analysis of 2D-electrophoresis gels. J Comput Biol. 2002; 9(2): 299-315. doi: 10.1089/10665270252935476
Kozuka-Hata H, Nasu-Nishimura Y, Koyama-Nasu R, Ao-Kondo H, Tsumoto K, Akiyama T, et al. Phosphoproteome of human glioblastoma initiating cells reveals novel signaling regulatorsencoded by the transcriptome. PLoS One. 2012; 7(8): e43398. doi: 10.1371/journal.pone.0043398.
Pooladi M, Rezaei-Tavirani M, Hashemi M, Hesami-Tackalloud S, Khaghani-Razi-Abad S, Firouzi-Dalvand L, et al. Altered expression of Epidermal Growth Factor Receptor (EGFR) in Glioma. Biomacromol J. 2015; 1(1):122-129.
Ahrens CH, Brunner E, Qeli E, Basler K, Aebersold R. Generating and navigating proteome maps using mass spectrometry. Nat Rev Mol Cell Biol. 2010; 11(11): 789-801. doi: 10.1038/nrm2973.
Barbosa EB, Vidotto A, Polachini GM, Henrique T, Marqui AB, Tajara EH. Proteomics: methodologies and applications to the study of human diseases. Rev Assoc Med Bras. 2012; 58(3): 366-375. PMID: 22735231.
Honda K, Ono M, Shitashige M, Masuda M, Kamita M, Miura N. et al. Proteomic approaches to the discovery of cancer biomarkers for early detection and personalized medicine. Jpn J Clin Oncol. 2013; 43(2): 103-109.
Aebersold R, Anderson L, Caprioli R, Druker B, Hartwell L, Smith R. Perspective: a program to improve protein biomarker discovery for cancer. J Proteome Res. 2005; 4(4): 1104-1109. doi: 10.1021/pr050027n
Koshel BM, Wirth MJ. Trajectory of isoelectric focusing from gels to capillaries to immobilized gradients in capillaries. Proteomics. 2012; 12(19-20): 2918-2926. doi: 10.1002/pmic.201200213.
Mitchell P. Proteomics retrenches. Nat Biotechnol. 2010; 28(7): 665-670. doi: 10.1038/nbt0710-665.
Farahtaj F, Zandi F, Khalaj V, Biglari P, Fayaz A, Vaziri B. Proteomics analysis of human brain tissue infected by street rabies virus. Mol Biol Rep. 2013; 40(11): 6443-6450. doi: 10.1007/s11033-013-2759-0.
Pooladi M, Khaghani-Razi-Abad S, Hashemi M. Proteomics analysis of human brain glial cell astrocytoma proteome by 2D gel. Indian J Cancer. 2014; 51(2):159-162. doi: 10.4103/0019-509X.138271
Bharati M, Shweta P, Priya C, Namita KK, Suvarna D, Amol B, et al. Proteomics: Emerging analytical techniques. International Journal of Genetics. 2009; 1(1): 17-24.
Weiss W, Görg A. High-resolution two-dimensional electrophoresis. Methods Mol Biol. 2009; 564: 13-32. doi: 10.1007/978-1-60761-157-8_2
Chaurand P, Schwartz SA, Caprioli RM. Assessing protein patterns in disease using imaging mass spectrometry. J Proteome Res. 2004; 3(2): 245-252. PMID: 15113100
Jensen ON. Modification-specific proteomics: characterization of post-translational modifications by mass spectrometry. Curr Opin Chem Biol. 2004; 8(1): 33-41. doi: 10.1016/j.cbpa.2003.12.009
Erlandsson A, Brännvall K, Gustafsdottir S, Westermark B, Forsberg-Nilsson K. Autocrine/paracrine platelet-derived growth factor regulates proliferation of neural progenitor cells. Cancer Res. 2006; 66(16): 8042-8048. doi: 10.1158/0008-5472.CAN-06-0900
Hammond JW, Cai D, Verhey KJ. Tubulin modifications and their cellular functions. Curr Opin Cell Biol. 2008;20(1): 71-76. doi: 10.1016/j.ceb.2007.11.010.
Li G, Jiang H, Chang M, Xie H, Hu L. (2011). HDAC6 α-tubulin deacetylase: a potential therapeutic target in neurodegenerative diseases. J Neurol Sci. 2011; 304(1-2): 1-8. doi: 10.1016/j.jns.2011.02.017.
Kline-Smith SL, Walczak CE. Mitotic spindle assembly and chromosome segregation: refocusing on microtubule dynamics. Mol Cell. 2004; 15(3): 317-327. doi: 10.1016/j.molcel.2004.07.012
Nogales E, Wang HW. Structural intermediates in microtubule assembly and disassembly: how and why? Curr Opin Cell Biol. 2006; 18(2): 179-184. doi: 10.1016/j.ceb.2006.02.009
Berges R, Balzeau J, Peterson AC, Eyer J. A tubulin binding peptide targets glioma cells disrupting their microtubules, blocking migration, and inducing apoptosis. Mol Ther. 2012; 20(7): 1367-1377. doi: 10.1038/mt.2012.45.
Chen J, Serizawa T, Komiyama M. Binding analysis of peptides that recognize preferentially cis-azobenzene groups of synthetic polymers. J Pept Sci. 2011; 17(2): 163-168. doi: 10.1002/psc.1299.
Guerrini R, Salvadori S, Rizzi A, Regoli D, Calo' G. Neurobiology, pharmacology, and medicinal chemistry of neuropeptide S and its receptor. Med Res Rev. 2010; 30(5):751-777. doi: 10.1002/med.20180.
Verdier-Pinard P, Pasquier E, Xiao H, Burd B, Villard C, Lafitte D, et al. Tubulin proteomics: towards breaking the code. Anal Biochem. 2009; 384(2): 197-206. doi: 10.1016/j.ab.2008.09.020
Wehland J, Willingham MC, Sandoval IV. A rat monoclonal antibody reacting specifically with the tyrosylated form ofalpha-tubulin. I. Biochemical characterization, effects on microtubule polymerization in vitro, and microtubule polymerization and organization in vivo. J Cell Biol. 1983; 97(5 pt 1): 1467-1475. PMID: 6415068
Kumar N, Flavin M. Preferential action of a brain detyrosinolating carboxypeptidase on polymerized tubulin. J Biol Chem. 1981; 256(14): 7678-7686. PMID: 6114100
Nakagawa U, Suzuki D, Ishikawa M, Sato H, Kamemura K, Imamura A. Acetylation of α-tubulin on Lys40 is a widespread post-translational modification in angiosperms. Biosci Biotechnol Biochem. 2013; 77(7):1602-605. doi: 10.1271/bbb.130261
- Abstract Viewed: 225 times
- PDF Downloaded: 273 times