Beta Actin Expression Profile in Malignant Human Glioma Tumors
International Clinical Neuroscience Journal,
Vol. 5 No. 2 (2018),
19 June 2018
,
Page 72-77
Abstract
Background: Proteomics is considered a new era in neurophysiological/ neuropathological research including brain tumors. Gliomas which are derived from glial cells are the most common type of brain tumor in humans.
Methods: In the present study the total protein content of healthy cells of the brain and brain tumor cells was extracted, purified and quantified by Bradford assay. Two-dimensional electrophoresis were used for protein separation followed by statistical analysis. Primary protein detection was performed based on the differences in isoelectric pH, molecular weight of proteins and protein data banks, which was further confirmed by MALDI-TOF/TOF mass spectrometry (MS).
Results: Our results showed elevated levels of beta-actin protein expression in glioma brain tumor cells. It is important to know when a cell is transformed and when it becomes malignant. Here we evaluated the beta-actin expression in malignant cells.
Conclusion: Since structural changes are highly involved in tumor cell malignancy, beta-actin elevations can contribute in glioma tumor cell invasiveness.
- beta-actin
- glioma
- proteomics
- mass spectrometry
How to Cite
References
References:
Hashemi M, Pooladi M, Khaghani-Razi-Abad S. The investigation of changes in proteins expression (Apolipoprotein A1 and albumin) in malignant astrocytoma brain tumor. J Cancer Res Ther. 2014;10(1):107-11. doi: 10.4103/0973-1482.131413.
Gollapalli K, Ray S, Srivastava R, Renu D, Singh P, Dhali S, et al. Investigation of serum proteome alterations in human glioblastoma multiforme. Proteomics. 2012; 12(14): 2378-90. doi: 10.1002/pmic.201200002.
Lemée JM, Com E, Clavreul A, Avril T, Quillien V, de Tayrac M, et al. Proteomic analysis of glioblastomas: what is the best brain control sample? J Proteomics. 2013; 85:165-73.doi:10.1016/j.jprot.2013. 04.031.
Pooladi M, Khaghani-Razi-Abad S, Hashemi M. Proteomics analysis of human brain glial cell astrocytoma proteome by 2D gel. Indian journal of cancer. 2014; 51(2):159-162.
Jansen M, Yip S, Louis DN. Molecular pathology in adult gliomas: diagnostic, prognostic, and predictive markers. Lancet Neurol. 2010; 9(7):717-26. doi: 10.1016/S1474-4422(10)70105-8.
Pooladi M, Khaghani-Razi-Abad S, Nazarian N, Firouzi-Dalvand L, Hooshiyar M. Altered expression of Isocitrate Dehydrogenases1 in astrocytoma (III and IV) and oligodendroglioma (III) brain tumors. Journal of protein and proteomics. 2014; 5(1): 55-64.
Figarella-Branger D, Bouvier C. Histological classification of human gliomas: state of art and controversies. Bull Cancer. 2005; 92(4):301-9.
Saratsis AM, Yadavilli S, Magge S, Rood BR, Perez J, Hill DA, Hwang E, Kilburn L, Packer RJ, Nazarian J. Insights into pediatric diffuse intrinsic pontine glioma through proteomic analysis of cerebrospinal fluid. Neuro Oncol. 2012;14(5):547-60. doi: 10.1093/neuonc/nos067.
Honda K, Ono M, Shitashige M, Masuda M, Kamita M, Miura N, et al. Proteomic approaches to the discovery of cancer biomarkers for early detection and personalized medicine. Jpn J Clin Oncol. 2013; 43(2):103-9. doi: 10.1093/jjco/hys200.
Khaghani-Razi-Abad S, Hashemi M, Pooladi M, Entezari M, Kazemi E. Proteomics analysis of human brain glial cell oligodandroglioma proteome by 2D gel. Gene. 2015, 569; 77-82. doi: 10.4103/0019-509X.138271.
Fang X, Wang C, Balgley BM, Zhao K, Wang W, He F, et al. Targeted tissue proteomic analysis of human astrocytomas. J Proteome Res. 2012; 11(8):3937-46. doi: 10.1021/pr300303t.
Cao H, Wang F, Li XJ. Future Strategies on Glioma Research: From Big Data to the Clinic. Genomics Proteomics Bioinformatics. 2017;15(4): 263-265. doi: 10.1016/j.gpb.2017.07.001.
Ardekani AM, Akhondi MM, Sadeghi MR. Application of genomic and proteomic technologies to early detection of cancer. Arch Iran Med. 2008; 11(4):427-34. doi: 08114/AIM.0015.
Pooladi M, Rezaei-Tavirani M, Hashemi M, Hesami-Tackallou S, Khaghani-Razi-Abad S, Moradi A, et al. Cluster and Principal Component Analysis of Human Glioblastoma Multiforme (GBM) Tumor Proteome. Iran J Cancer Prev. 2014;7(2):87-95.
Meunier B, Bouley J, Piec I, Bernard C, Picard B, Hocquette JF. Data analysis methods for detection of differential protein expression in two-dimensional gel electrophoresis. Anal Biochem. 2005; 340(2):226-30. doi: 10.1016/j.ab.2005.02.028.
Vogel TW, Zhuang Z, Li J, Okamoto H, Furuta M, Lee YS, et al. Proteins and protein pattern differences between glioma cell lines and glioblastoma multiforme. Clin Cancer Res. 2005; 11(10): 3624-32. doi: 10.1158/1078-0432.CCR-04-2115.
Boja ES, Rodriguez H. The path to clinical proteomics research: integration of proteomics, genomics, clinical laboratory and regulatory science. Korean J Lab Med. 2011; 31(2):61-71. doi: 10.3343/kjlm.2011.31.2.61.
Tondeleir D, Lambrechts A, Müller M, Jonckheere V, Doll T, Vandamme D, et al. Cells lacking β-actin are genetically reprogrammed and maintain conditional migratory capacity. Mol Cell Proteomics. 2012; 11(8):255-71. doi: 10.1074/mcp.M111.015099.
Dubey M, Singh AK, Awasthi D, Nagarkoti S, Kumar S, Ali W, et al. L-plastin S-glutathionylation promotes reduced binding to β-actin and affects neutrophil functions. Free Radic Biol Med. 2015; pii: 00170-00177. doi: 10.1016/j.freeradbiomed.2015.04.008.
Kalo A, Kanter I, Shraga A, Sheinberger J, Tzemach H, Kinor N, et al. Cellular Levels of Signaling Factors Are Sensed by β-actin Alleles to Modulate Transcriptional Pulse Intensity. Cell Rep. 2015; 11(3):419-32. doi: 10.1016/j.celrep.2015.10.053.
Lichti CF, Mostovenko E, Wadsworth PA, Lynch GC, Pettitt BM, Sulman EP, et al. Systematic identification of single amino acid variants in glioma stem-cell-derived chromosome 19 proteins. J Proteome Res. 2015; 14(2):778-86. doi: 10.1021/pr500810g.
Khalil AA. Biomarker discovery: a proteomic approach for brain cancer profiling. Cancer Sci. 2007; 98(2):201-13.
Bi B, Li F, Guo J, Li C, Jing R, Lv X, et al. Label-free quantitative proteomics unravels the importance of RNA processing in glioma malignancy. Neuroscience. 2017;351:84-95. doi: 10.1016/j.neuroscience.2017.03.023.
Westhoff CC, Schoner K, Hartmann S, Sesterhenn AM, Moll R. Actin isoform expression patterns in adult extracardiac and cardiac rhabdomyomas indicate a different cell of origin. Virchows Arch. 2017; 470(3):285-290. doi: 10.1007/s00428-017-2069-3.
Nebl T, Pestonjamasp KN, Leszyk JD, Crowley JL, Oh SW, Luna EJ. Proteomic analysis of a detergent-resistant membrane skeleton from neutrophil plasma membranes. J Biol Chem. 2002 8;277(45):43399-409. doi: 10.1074/jbc.M205386200.
Cherepanova O, Orlova A, Galkin VE, van der Ven PF, Fürst DO, Jin JP, et al. Xin-repeats and nebulin-like repeats bind to F-actin in a similar manner. J Mol Biol. 2006 24;356(3):714-23. doi: 10.1016/j.jmb.2005.11.082
Tomanek L. Proteomics to study adaptations in marine organisms to environmental stress. J Proteomics. 2014 13; 105:92-106. doi: 10.1016/j.jprot.2014.04.009.
Ostrowska Z, Moraczewska J. Cofilin - a protein controlling dynamics of actin filaments. Postepy Hig Med Dosw (Online). 2017 5;71(0):339-351.
Poschmann G, Grzendowski M, Stefanski A, Bruns E, Meyer HE, Stühler K. Redox proteomics reveal stress responsive proteins linking peroxiredoxin-1 status in glioma to chemosensitivity and oxidative stress. Biochim Biophys Acta. 2015; 1854(6):624-31. doi: 10.1016/j.bbapap.2014.11.011.
Nowak D, Krawczenko A, Dus D, Malicka-Blaszkiewicz M. Actin in human colon adenocarcinoma cells with different metastatic potential. Acta Biochim Pol. 2002; 49: 823–828. doi: 024904823
He J, Liu Y, Lubman DM. Targeting glioblastoma stem cells: cell surface markers. Curr Med Chem. 2012; 19(35):6050-5.
Jovčevska I, Zupanec N, Kočevar N, Cesselli D, Podergajs N, Stokin CL, et al. TRIM28 and β-actin identified via nanobody-based reverse proteomics approach as possible human glioblastoma biomarkers. PLoS One. 2014 24;9(11): e113688. doi: 10.1371/journal. pone. 0113688.
Boczkowska M, Yurtsever Z, Rebowski G, Eck MJ, Dominguez R. Crystal Structure of Leiomodin 2 in Complex with Actin: A Structural and Functional Reexamination. Biophys J. 2017 22;113(4):889-899. doi: 10.1016/j.bpj.2017.07.007.
Lee W, Lim S, Kim Y. The role of myosin II in glioma invasion: A mathematical model. PLoS One. 2017 6;12(2):e0171312. doi: 10.1371/journal.pone.0171312.
Fages C, Kaksonen M, Kinnunen T, Punnonen EL, Rauvala H. molecule) with the cell surface localizes beta-actin mRNA. J Cell Sci. 1998;111 ( Pt 20):3073-80.
Panopoulos A1, Howell M, Fotedar R, Margolis RL. Glioblastoma motility occurs in the absence of actin polymer. Mol Biol Cell. 2011 1;22(13):2212-20. doi: 10.1091/mbc.E10-10-0849.
Ziv-Av A, Giladi ND, Lee HK, Cazacu S, Finniss S, Xiang C, et al. RTVP-1 regulates glioma cell migration and invasion via interaction with N-WASP and hnRNPK. Oncotarget. 2015 14;6(23):19826-40. doi: 10.18632/oncotarget.4471
- Abstract Viewed: 381 times
- PDF Downloaded: 325 times