Classification of Mental Stress Levels by Analyzing fNIRS Signal Using Linear and Non-linear Features
International Clinical Neuroscience Journal,
Vol. 5 No. 2 (2018),
19 June 2018
,
Page 55-61
Abstract
Background: Mental stress is known as one of the main influential factors in development of different diseases including heart attack and stroke. Thus, quantification of stress level can be very important in preventing many diseases and in human health.
Methods: The prefrontal cortex is involved in body regulation in response to stress. In this research, functional near infrared spectroscopy (fNIRS) signals were recorded from FP2 position in the international electroencephalographic 10–20 system during a stressful mental arithmetic task to be calculated within a limited period of time. After extracting the brain’s hemodynamic response from fNIRS signal, different linear and nonlinear features were extracted from the signal which are then used for stress levels classification both individually and in combination.
Results: In this study, the maximum accuracy of 88.72% was achieved in classification between high and low stress levels, and 96.92% was obtained for the stress and rest states.
Conclusion: Our results showed that using the proposed linear and nonlinear features it is possible to effectively classify stress levels from fNIRS signals recorded from only one site in the prefrontal cortex. Comparing to other methods, it is shown that the proposed algorithm outperforms other previously reported methods using the nonlinear features extracted from the fNIRS signal. These results clearly show the potential of fNIRS signal as a useful tool for early diagnosis and quantify stress.
- Mental stress
- Functional near-infrared spectroscopy
- Non-linear analysis.
How to Cite
References
Huttunen MO. [The nature of stress]. Duodecim. 1981;97(20):1722-1727.
Herman JP, Ostrander MM, Mueller NK, Figueiredo H. Limbic system mechanisms of stress regulation: hypothalamo-pituitary-adrenocortical axis. Prog Neuropsychopharmacol Biol Psychiatry. 2005;29(8):1201-1213. doi:10.1016/j. pnpbp.2005.08.006
Selye H. Stress and the general adaptation syndrome. Br Med J. 1950;1(4667):1383-1392.
Bishop S, Duncan J, Brett M, Lawrence AD. Prefrontal cortical function and anxiety: controlling attention to threat-related stimuli. Nat Neurosci. 2004;7(2):184-188. doi:10.1038/ nn1173
Hammen C. Stress and depression. Annu Rev Clin Psychol. 2005;1:293-319. doi:10.1146/annurev. clinpsy.1.102803.143938
Arnsten AF. Prefrontal cortical network connections: key site of vulnerability in stress and schizophrenia. Int J Dev Neurosci. 2011;29(3):215-223. doi:10.1016/j.ijdevneu.2011.02.006
Arnsten AF. Stress signalling pathways that impair prefrontal cortex structure and function. Nat Rev Neurosci. 2009;10(6):410-422. doi:10.1038/nrn2648
Atsan N. Decision-Making under Stress and Its Implications for Managerial Decision-Making: A Review of Literature. Int J Bus Soc Res. 2016;6(3):38-47. doi:10.18533/ijbsr.v6i3.936
Arnsten AF. Stress weakens prefrontal networks: molecular insults to higher cognition. Nat Neurosci. 2015;18(10):1376- 1385. doi:10.1038/nn.4087
Liston C, McEwen BS, Casey BJ. Psychosocial stress reversibly disrupts prefrontal processing and attentional control. Proc Natl Acad Sci U S A. 2009;106(3):912-917. doi:10.1073/ pnas.0807041106
Ajjan RA, Grant PJ. Cardiovascular disease prevention in patients with type 2 diabetes: The role of oral anti-diabetic agents. Diab Vasc Dis Res. 2006;3(3):147-158. doi:10.3132/ dvdr.2006.023
McEwen BS. Central effects of stress hormones in health and disease: Understanding the protective and damaging effects of stress and stress mediators. Eur J Pharmacol. 2008;583(2- 3):174-185. doi:10.1016/j.ejphar.2007.11.071
Strike PC, Steptoe A. Systematic review of mental stress-induced myocardial ischaemia. Eur Heart J. 2003;24(8):690- 703.
Tsutsumi A, Kayaba K, Ishikawa S. Impact of occupational stress on stroke across occupational classes and genders. Soc Sci Med. 2011;72(10):1652-1658. doi:10.1016/j. socscimed.2011.03.026
Cohen S, Kessler RC, Gordon LU. Measuring Stress: A Guide for Health and Social Scientists. Oxford University Press; 1997.
Daudelin-Peltier C, Forget H, Blais C, Deschenes A, Fiset D. The effect of acute social stress on the recognition of facial expression of emotions. Sci Rep. 2017;7(1):1036. doi:10.1038/s41598-017-01053-3
Partala T, Surakka V. Pupil size variation as an indication of affective processing. Int J Hum Comput Stud. 2003;59(1- 2):185-198. doi:10.1016/S1071-5819(03)00017-X
Dieleman GC, Huizink AC, Tulen JH, et al. Alterations in HPA-axis and autonomic nervous system functioning in childhood anxiety disorders point to a chronic stress hypothesis. Psychoneuroendocrinology. 2015;51:135-150. doi:10.1016/j.psyneuen.2014.09.002
Liapis A, Katsanos C, Sotiropoulos D, Xenos M, Karousos N. Stress recognition in human-computer interaction using physiological and self-reported data: a study of gender differences. In: Proceedings of the 19th Panhellenic Conference on Informatics. PCI ’15. New York, NY, USA: ACM; 2015:323-328.
Subahni AR, Xia L, Malik AS. Association of mental stress with video games. In: 2012 4th International Conference on Intelligent and Advanced Systems (ICIAS2012). Vol 1; 2012:82-85. doi:10.1109/ICIAS.2012.6306164
Wielgosz J, Schuyler BS, Lutz A, Davidson RJ. Long-term mindfulness training is associated with reliable differences in resting respiration rate. Sci Rep. 2016;6:27533. doi:10.1038/ srep27533
Dedovic K, Renwick R, Mahani NK, Engert V, Lupien SJ, Pruessner JC. The Montreal Imaging Stress Task: using functional imaging to investigate the effects of perceiving and processing psychosocial stress in the human brain. J Psychiatry Neurosci. 2005;30(5):319-325.
Subhani AR, Mumtaz W, Saad MNBM, Kamel N, Malik AS. Machine Learning Framework for the Detection of Mental Stress at Multiple Levels. IEEE Access. 2017;5:13545-13556. doi:10.1109/ACCESS.2017.2723622
Subhani AR, Xia L, Malik AS, Othman Z. Quantification of physiological disparities and task performance in stress and control conditions. Conf Proc IEEE Eng Med Biol Soc. 2013;2013:2060-2063. doi:10.1109/embc.2013.6609937
Smitha KG, Xin NY, Lian SS, Robinson N. Classifying subjective emotional stress response evoked by multitasking using EEG. In: 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC); 2017:3-8. doi:10.1109/ SMC.2017.8123091
Taga G, Watanabe H, Homae F. Spatiotemporal properties of cortical haemodynamic response to auditory stimuli in sleeping infants revealed by multi-channel near-infrared spectroscopy. Philos Trans A Math Phys Eng Sci. 2011;369(1955):4495- 4511. doi:10.1098/rsta.2011.0238
Ferrari M, Quaresima V. A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application. Neuroimage. 2012;63(2):921-935. doi:10.1016/j.neuroimage.2012.03.049
Khan MJ, Hong MJ, Hong KS. Decoding of four movement directions using hybrid NIRS-EEG brain-computer interface. Front Hum Neurosci. 2014;8:244. doi:10.3389/ fnhum.2014.00244
Naseer N, Hong KS. fNIRS-based brain-computer interfaces: a review. Front Hum Neurosci. 2015;9:3. doi:10.3389/ fnhum.2015.00003
Hoshi Y, Tamura M. Detection of dynamic changes in cerebral oxygenation coupled to neuronal function during mental work in man. Neurosci Lett. 1993;150(1):5-8.
Strangman G, Culver JP, Thompson JH, Boas DA. A quantitative comparison of simultaneous BOLD fMRI and NIRS recordings during functional brain activation. Neuroimage. 2002;17(2):719-731.
Wolf M, Wolf U, Toronov V, et al. Different time evolution of oxyhemoglobin and deoxyhemoglobin concentration changes in the visual and motor cortices during functional stimulation: a near-infrared spectroscopy study. Neuroimage. 2002;16(3 Pt 1):704-712.
Delpy DT, Cope M, van der Zee P, Arridge S, Wray S, Wyatt J. Estimation of optical pathlength through tissue from direct time of flight measurement. Phys Med Biol. 1988;33(12):1433- 1442.
Sassaroli A, Fantini S. Comment on the modified Beer-Lambert law for scattering media. Phys Med Biol. 2004;49(14):N255- 257.
Hemmati N, Setarehdan SK, Ahmadi Noubari H. Multi-channel Near-Infrared Spectroscopy (NIRS) system for noninvasive monitoring of brain activity. Proc 2012 IEEE-EMBS Int Conf Biomed Health Informatics; 2012:212-215. doi:10.1109/BHI.2012.6211548
Molavi B, Dumont GA. Wavelet-based motion artifact removal for functional near-infrared spectroscopy. Physiol Meas. 2012;33(2):259-270. doi:10.1088/0967-3334/33/2/259
Shirvan RA, Setarehdan SK, Nasrabadi AM. A new approach to estimating the evoked hemodynamic response applied to dual channel functional near infrared spectroscopy. Comput Biol Med. 2017;84:9-19. doi:10.1016/j. compbiomed.2017.03.010
Pincus SM. Approximate entropy as a measure of system complexity. Proc Natl Acad Sci U S A. 1991;88(6):2297-2301.
Petrosian A. Kolmogorov complexity of finite sequences and recognition of different preictal EEG patterns. Proc Eighth IEEE Symp Comput Med Syst; 1995:212-217. doi:10.1109/ CBMS.1995.465426
Bryce RM, Sprague KB. Revisiting detrended fluctuation analysis. Sci Rep. 2012;2:315. doi:10.1038/srep00315
Webber CL Jr, Zbilut JP. Recurrence Quantification Analysis of Nonlinear Dynamical Systems. Tutorials Contemp nonlinear methods Behav Sci. 2005:26-94.
Pohjalainen J, Rasanen O, Kadioglu S. Feature selection methods and their combinations in high-dimensional classification of speaker likability, intelligibility and personality traits. Comput Speech Lang. 2015;29(1):145-171. doi:10.1016/j.csl.2013.11.004
Al-Shargie F, Kiguchi M, Badruddin N, Dass SC, Hani AF, Tang TB. Mental stress assessment using simultaneous measurement of EEG and fNIRS. Biomed Opt Express. 2016;7(10):3882- 3898. doi:10.1364/boe.7.003882
Al-Shargie F, Tang TB, Kiguchi M. Assessment of mental stress effects on prefrontal cortical activities using canonical correlation analysis: an fNIRS-EEG study. Biomed Opt Express. 2017;8(5):2583-2598. doi:10.1364/boe.8.002583
Jun G, Smitha KG. EEG based stress level identification. In: 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC); 2016:3270-3274. doi:10.1109/ SMC.2016.7844738
Hou X, Liu Y, Sourina O, Tan YRE, Wang L, Mueller-Wittig W. EEG Based Stress Monitoring. In: 2015 IEEE International Conference on Systems, Man, and Cybernetics. ; 2015:3110- 3115. doi:10.1109/SMC.2015.540
Healey JA, Picard RW. Detecting stress during real-world driving tasks using physiological sensors. IEEE trans Intell Transp Syst. 2005;6(2):156-166. doi:10.1109/TITS.2005.848368
- Abstract Viewed: 724 times
- PDF Downloaded: 541 times