An Effective Brain-Computer Interface System Based on the Optimal Timeframe Selection of Brain Signals
International Clinical Neuroscience Journal,
Vol. 5 No. 1 (2018),
15 March 2018
,
Page 35-42
Abstract
Background: Brain responds in a short timeframe (with certain delay) after the request for doing a motor imagery task and therefore it is most likely that the individual not focus continuously on the task at entire interval of data acquisition time or even think about other things in a very short time slice. In this paper, an effective brain-computer interface system is presented based on the optimal timeframe selection of brain signals.
Methods: To prove the stated claim, various timeframes with different durations and delays selected based on a specific rule from EEG signals recorded during right/left hand motor imagery task and subsequently, feature extraction and classification are done.
Results: Implementation results on the two well-known datasets termed Graz 2003 and Graz 2005; shows that the smallest systematically created timeframe of data acquisition interval have had the best results of classification. Using this smallest timeframe, the classification accuracy increased up to 91.43% for Graz 2003 and 88.96, 83.64 and 84.86 percent for O3, S4 and X11 subjects of Graz 2005 database respectively.
Conclusion: Removing the additional information in which the individual does not focus on the motor imagery task and utilizing the most distinguishing timeframe of EEG signals that correctly interpret individual intentions improves the BCI system performance.
- BCI systems
- Optimal timeframe
- Brain signals
How to Cite
References
Fang Y, Chen M, Zheng X. Extracting features from phase space of EEG signals in brain–computer interfaces. Neurocomputing. 2015;151:1477-85. doi: 10.1016/j.neucom.2014.10.038.
Malik AN, Iqbal J, Tiwana MI. Temporal based EEG Signals Classification for Talocrural and Knee Joint Movements using Emotive Head Set. J Biomed Eng Med Imaging. 2015;2(6):69- 77. doi: 10.14738/jbemi.26.1730.
Sabarigiri B, Suganyadevi D. An Efficient Multimodal Biometric Authentication based on IRIS and Electroencephalogram (EEG). In: 5th International Conference on Control, Communication and Power Engineering (CCPE); Chennai, India; 2014.
Marshall D, Coyle D, Wilson S, Callaghan M. Games, gameplay, and BCI: the state of the art. IEEE Trans Comput Intell AI Games. 2013;5(2):82-99. doi: 10.1109/TCIAIG.2013.2263555.
Holler Y, Bergmann J, Kronbichler M, Crone JS, Schmid EV, Thomschewski A, et al. Real movement vs. motor imagery in healthy subjects. Int J Psychophysiol. 2013;87(1):35-41. doi: 10.1016/j.ijpsycho.2012.10.015.
Gurkok H, Nijholt A. Brain–Computer Interfaces for Multimodal Interaction: A Survey and Principles. Int J Hum Comput Interact. 2012;28(5):292-307. doi: 10.1080/10447318.2011.582022.
Nicolas-Alonso LF, Gomez-Gil J. Brain computer interfaces, a review. Sensors (Basel). 2012;12(2):1211-79. doi: 10.3390/ s120201211.
Ang CS, Sakel M, Pepper M, Phillips M. Use of brain computer interfaces in neurological rehabilitation. Br J Neurosci Nurs. 2011;7(3):523-8. doi: 10.12968/bjnn.2011.7.3.523.
Abdulkader SN, Atia A, Mostafa M-SM. Brain computer interfacing: Applications and challenges. Egypt Informatics J. 2015;16(2):213-30. doi: 10.1016/j.eij.2015.06.002.
Ruiz-Blondet MV, Jin Z, Laszlo S. CEREBRE: A novel method for very high accuracy event-related potential biometric identification. IEEE Transactions on Information Forensics and Security. 2016;11(7):1618-29. doi: 10.1109/ TIFS.2016.2543524.
Armstrong BC, Ruiz-Blondet MV, Khalifian N, Kurtz KJ, Jin Z, Laszlo S. Brainprint: Assessing the uniqueness, collectability, and permanence of a novel method for ERP biometrics. Neurocomputing. 2015;166:59-67. doi: 10.1016/j. neucom.2015.04.025.
Duan L, Xu Y, Cui S, Chen J, Bao M. Feature extraction of motor imagery EEG based on extreme learning machine auto-encoder. In: Cao J, Mao K, Wu J, Lendasse A. Proceedings of ELM 2015; 2015; Hangzhou, China. New York: Springer; 2016:361-70.
Smith RC. Electroencephalograph based brain computer interfaces [dissertation]. Dublin: University College Dublin; 2004.
Khalid MB, Rao NI, Rizwan-i-Haque I, Munir S, Tahir F. Towards a brain computer interface using wavelet transform with averaged and time segmented adapted wavelets. In: 2009 2nd International Conference on Computer, Control and Communication (IC4); 2009 Feb 17-18; Karachi, Pakistan; 2009:1-4.
Zhang Y, Wang Y, Jin J, Wang X. Sparse Support Vector Machine for Simultaneous Feature Selection and Classification in Motor- Imagery-Based BCI. In: Wang R, Pan X. Advances in Cognitive Neurodynamics (V). Proceedings of the 5th International Conference on Cognitive Neurodynamics; 2015 Jun 3-7; Sanya, China. Singapore: Springer; 2016:363-69.
Song X, Yoon SC. Improving brain-computer interface classification using adaptive common spatial patterns. Comput Biol Med. 2015;61:150-60. doi: 10.1016/j. compbiomed.2015.03.023.
Chen M, Fang Y, Zheng X. Phase space reconstruction for improving the classification of single trial EEG. Biomed Signal Process Control. 2014;11:10-6. doi: 10.1016/j. bspc.2014.02.002.
Xu Q, Zhou H, Wang Y, Huang J. Fuzzy support vector machine for classification of EEG signals using wavelet-based features. Med Eng Phys. 2009;31(7):858-65. doi: 10.1016/j. medengphy.2009.04.005.
Baig MZ, Mehmood Y, Ayaz Y. A BCI system classification technique using median filtering and wavelet transform. In: Kotzab H, Pannek J, Thoben KD, eds. Dynamics in Logistics. Switzerland: Springer; 2016:355-64.
Wei Y, Jun Y, Lin S, Hong L. Improving classification accuracy using fuzzy method for BCI signals. Biomed Mater Eng. 2014;24(6):2937-43. doi: 10.3233/bme-141113.
Rodriguez-Bermudez G, Garcia-Laencina PJ, Roca-Gonzalez J, Roca-Dorda J. Efficient feature selection and linear discrimination of EEG signals. Neurocomputing. 2013;115:161- 5. doi: 10.1016/j.neucom.2013.01.001.
Bashashati H, Ward RK, Birch GE, Bashashati A. Comparing Different Classifiers in Sensory Motor Brain Computer Interfaces. PLoS One. 2015;10(6):e0129435. doi: 10.1371/ journal.pone.0129435.
Zhong M, Lotte F, Girolami M, Lecuyer A. Classifying EEG for brain computer interfaces using Gaussian processes. Pattern Recognit Lett. 2008;29(3):354-9. doi: 10.1016/j. patrec.2007.10.009.
Zhou SM, Gan JQ, Sepulveda F. Classifying mental tasks based on features of higher-order statistics from EEG signals in brain–computer interface. Inf Sci. 2008;178(6):1629-40. doi: 10.1016/j.ins.2007.11.012.
Lotte F, Congedo M, Lecuyer A, Lamarche F, Arnaldi B. A review of classification algorithms for EEG-based brain–computer interfaces. J Neural Eng. 2007;4(2):R1.
Pfurtscheller G, Neuper C. Motor imagery and direct brain-computer communication. Proc IEEE. 2001;89(7):1123-34. doi: 10.1109/5.939829.
Pfurtscheller G, Schlogl A. BCI Competition II. Graz University of Technology; 2002. Available from: http://www.bbci.de/ competition/ii/.
Pfurtscheller G, Schlogl A. BCI Competition III. Graz University of Technology; 2005. Available from: http://www.bbci.de/ competition/iii/.
Pfurtscheller G, Brunner C, Schlogl A, Lopes da Silva FH. Mu rhythm (de)synchronization and EEG single-trial classification of different motor imagery tasks. Neuroimage. 2006;31(1):153- 9. doi: 10.1016/j.neuroimage.2005.12.003.
Gupta L, McAvoy M, Phegley J. Classification of temporal sequences via prediction using the simple recurrent neural network. Pattern Recognit. 2000;33(10):1759-70. doi: 10.1016/ S0031-3203(99)00149-1.
Morales-Flores E, Ramirez-Cortes JM, Gomez-Gil P, Alarcon- Aquino V. Brain Computer Interface Development Based on Recurrent Neural Networks and ANFIS Systems. In: Melin P, Castillo O, eds. Soft Computing Applications in Optimization Control and Recognition. Heidelberg: Springer; 2013:215-36.
Elman JL. Finding Structure in Time. Cogn Sci. 1990;14(2):179- 211. doi: doi:10.1207/s15516709cog1402_1.
Hussain A, Aleksander I, Smith LS, Barros AK, Chrisley R, Cutsuridis V. Brain Inspired Cognitive Systems 2008. Berlin: Springer Science & Business Media; 2009.
- Abstract Viewed: 489 times
- PDF Downloaded: 329 times