The Optimum Concentration of N-Methyl D-Aspartate to Induce Dorsal Root Ganglion Neuron Activation through the N-Methyl D-Aspartate Receptor Pathway: Creating a Neuron Model For the in-vitro Study of Pain
Journal of Cellular & Molecular Anesthesia,
Vol. 8 No. 4 (2023),
6 November 2023
,
Page 221-230
https://doi.org/10.22037/jcma.v9i1.42426
Abstract
Background: In the in-vitro study on chronic pain, the N-methyl D-Aspartate receptor (NMDAR) activation in the dorsal root ganglion (DRG) neuron became one of the most important mechanisms to activate the chronic pain pathways. NMDAR activation can be induced using an NMDAR agonist. No guidelines explain the NMDA optimum concentration to induce DRG neuron activation through the NMDAR pathway. This study aims to find the optimum concentration of NMDA to induce DRG neuron activation through the NMDAR pathway.
Materials and Methods: We treat DRG neuron culture derived from the F11 cell line with 10, 20, 40, 60, 80, and 100 µM NMDA. Phosphorylated extracellular signal-regulated kinase (pERK), an activated neuron biomarker, is measured using an immunocytochemistry assay as a neuron activation biomarker. We validate the NMDA optimum concentration by measuring intracellular Ca2+ level, mitochondrial membrane potential (Δψm), and cytosolic adenosine triphosphate (ATP) in the activated neuron. Those parameters are the downstream process following NMDAR activation and are related to neuron activity. Statistical analysis was performed using the One-Way ANOVA test with α=5%.
Results: We found that NMDA 80 µM significantly had the highest pERK intensity and showed the most optimum neuron activation. Validation tests show an increase in intracellular Ca2+ influx and Δψm. NMDA 80 µM also causes significant depletion in the cytosolic ATP concentration related to neuron activation. NMDA 80 µM induces neuron activation by increasing pERK, Ca2+ influx, Δψm, and cytosolic ATP depletion.
Conclusion: NMDA 80 µM is the optimum concentration to induce DRG neuron activation through the NMDA receptor pathway.
- DRG neuron
- NMDA
- pERK
- calcium influx
- ATP
- mitochondrial membrane potential
How to Cite
References
Traynelis SF, Wollmuth LP, McBain CJ, Menniti FS, Vance KM, Ogden KK, et al. Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev. 2010;62(3):405-96.
Paoletti P, Neyton J. NMDA receptor subunits: function and pharmacology. Curr Opin Pharmacol. 2007;7(1):39-47.
Iacobucci GJ, Popescu GK. NMDA receptors: linking physiological output to biophysical operation. Nat Rev Neurosci. 2017;18(4):236-49.
Ji RR, Gereau RWt, Malcangio M, Strichartz GR. MAP kinase and pain. Brain Res Rev. 2009;60(1):135-48.
Dai Y, Iwata K, Fukuoka T, Kondo E, Tokunaga A, Yamanaka H, et al. Phosphorylation of extracellular signal-regulated kinase in primary afferent neurons by noxious stimuli and its involvement in peripheral sensitization. J Neurosci. 2002;22(17):7737-45.
Gao YJ, Ji RR. c-Fos and pERK, which is a better marker for neuronal activation and central sensitization after noxious stimulation and tissue injury? Open Pain J. 2009;2:11-7.
Safiulina D, Kaasik A. Energetic and dynamic: how mitochondria meet neuronal energy demands. PLoS Biol. 2013;11(12):e1001755.
Shetty PK, Galeffi F, Turner DA. Cellular Links between Neuronal Activity and Energy Homeostasis. Front Pharmacol. 2012;3:43.
Davis GW. Not Fade Away: Mechanisms of Neuronal ATP Homeostasis. Neuron. 2020;105(4):591-3.
Krames ES. The role of the dorsal root ganglion in the development of neuropathic pain. Pain Med. 2014;15(10):1669-85.
Haberberger RV, Barry C, Dominguez N, Matusica D. Human Dorsal Root Ganglia. Front Cell Neurosci. 2019;13:271.
Berta T, Qadri Y, Tan PH, Ji RR. Targeting dorsal root ganglia and primary sensory neurons for the treatment of chronic pain. Expert Opin Ther Targets. 2017;21(7):695-703.
Ahimsadasan N, Reddy V, Khan Suheb MZ, Kumar A. Neuroanatomy, Dorsal Root Ganglion. StatPearls. Treasure Island (FL): StatPearls Publishing. Copyright © 2023, StatPearls Publishing LLC.; 2023.
Chang HR, Kuo CC. The activation gate and gating mechanism of the NMDA receptor. J Neurosci. 2008;28(7):1546-56.
Chen S, Xu D, Fan L, Fang Z, Wang X, Li M. Roles of N-Methyl-D-Aspartate Receptors (NMDARs) in Epilepsy. Front Mol Neurosci. 2021;14:797253.
Furukawa H, Singh SK, Mancusso R, Gouaux E. Subunit arrangement and function in NMDA receptors. Nature. 2005;438(7065):185-92.
Pendergrass W, Wolf N, Poot M. Efficacy of MitoTracker Green and CMXrosamine to measure changes in mitochondrial membrane potentials in living cells and tissues. Cytometry A. 2004;61(2):162-9.
Pastori V, D'Aloia A, Blasa S, Lecchi M. Serum-deprived differentiated neuroblastoma F-11 cells express functional dorsal root ganglion neuron properties. PeerJ. 2019;7:e7951.
Clarke RJ, Johnson JW. NMDA receptor NR2 subunit dependence of the slow component of magnesium unblock. J Neurosci. 2006;26(21):5825-34.
Ferrari LF, Lotufo CM, Araldi D, Rodrigues MA, Macedo LP, Ferreira SH, et al. Inflammatory sensitization of nociceptors depends on activation of NMDA receptors in DRG satellite cells. Proc Natl Acad Sci U S A. 2014;111(51):18363-8.
Westergard T, McAvoy K, Russell K, Wen X, Pang Y, Morris B, et al. Repeat-associated non-AUG translation in C9orf72-ALS/FTD is driven by neuronal excitation and stress. EMBO Mol Med. 2019;11(2).
Gumy LF, Katrukha EA, Grigoriev I, Jaarsma D, Kapitein LC, Akhmanova A, et al. MAP2 Defines a Pre-axonal Filtering Zone to Regulate KIF1- versus KIF5-Dependent Cargo Transport in Sensory Neurons. Neuron. 2017;94(2):347-62.e7.
Kondo M, Shibuta I. Extracellular signal-regulated kinases (ERK) 1 and 2 as a key molecule in pain research. J Oral Sci. 2020;62(2):147-9.
Hung CH, Lee CH, Tsai MH, Chen CH, Lin HF, Hsu CY, et al. Activation of acid-sensing ion channel 3 by lysophosphatidylcholine 16:0 mediates psychological stress-induced fibromyalgia-like pain. Ann Rheum Dis. 2020;79(12):1644-56.
Khasabov SG, Simone DA. Loss of neurons in rostral ventromedial medulla that express neurokinin-1 receptors decreases the development of hyperalgesia. Neuroscience. 2013;250:151-65.
Simões AP, Silva CG, Marques JM, Pochmann D, Porciúncula LO, Ferreira S, et al. Glutamate-induced and NMDA receptor-mediated neurodegeneration entails P2Y1 receptor activation. Cell Death Dis. 2018;9(3):297.
Kristensen AS, Jenkins MA, Banke TG, Schousboe A, Makino Y, Johnson RC, et al. Mechanism of Ca2+/calmodulin-dependent kinase II regulation of AMPA receptor gating. Nat Neurosci. 2011;14(6):727-35.
Sui BD, Xu TQ, Liu JW, Wei W, Zheng CX, Guo BL, et al. Understanding the role of mitochondria in the pathogenesis of chronic pain. Postgrad Med J. 2013;89(1058):709-14.
Alano CC, Beutner G, Dirksen RT, Gross RA, Sheu SS. Mitochondrial permeability transition and calcium dynamics in striatal neurons upon intense NMDA receptor activation. J Neurochem. 2002;80(3):531-8.
Zorova LD, Popkov VA, Plotnikov EY, Silachev DN, Pevzner IB, Jankauskas SS, et al. Mitochondrial membrane potential. Anal Biochem. 2018;552:50-9.
Lange SC, Winkler U, Andresen L, Byhrø M, Waagepetersen HS, Hirrlinger J, et al. Dynamic Changes in Cytosolic ATP Levels in Cultured Glutamatergic Neurons During NMDA-Induced Synaptic Activity Supported by Glucose or Lactate. Neurochem Res. 2015;40(12):2517-26.
Rodrigues RJ, Tomé AR, Cunha RA. ATP as a multi-target danger signal in the brain. Front Neurosci. 2015;9:148.
Natsubori A, Tsunematsu T, Karashima A, Imamura H, Kabe N, Trevisiol A, et al. Intracellular ATP levels in mouse cortical excitatory neurons varies with sleep-wake states. Commun Biol. 2020;3(1):491.
- Abstract Viewed: 199 times
- PDF Downloaded: 173 times