Homing and mobilization of hematopoietic stem cells
Archives of Medical Laboratory Sciences,
Vol. 2 No. 4 (2016),
16 Farvardin 2017
https://doi.org/10.22037/amls.v2i4.17183
Abstract
Hematopoietic stem and progenitor cells (HSPCs) are non-stop travelers throughout body in both time and space. Understanding the mechanism of HSPCs homing and mobilization is important to enhance the efficacy at bone marrow transplantation and cellular therapy. Mobilized HSPCs has largely replaced than the use of bone marrow as a source of stem cells for both allogeneic and autologous stem cell transplantation. This review describes the specific factors which play a key role in homing and mobilization of HSPCs, includes SDF-1 and its receptor CXCR4, proteases (MMPs and CPM). Moreover, chemokines inducing rapid HPSCs mobilization would be discussed. In this article we showed that many factors such as adhesion molecules and SDF-1/CXCR4 have critical roles in homing hematopoietic stem cells and G.CSF, MMPs, adhesion molecules and ROS involvement in mobilization of stem cells. According to above, we can be rich the peripheral blood of HSPCS using of this factors and antagonist for this receptors on the osteoblastic cells or/and HSPCs to bone marrow transplant.- Homing
- Mobilization
- Transplant
- SDF-1
How to Cite
References
.1 Gazitt Y. Homing and mobilization of hematopoietic stem cells and hematopoietic cancer cells are mirror image processes, utilizing similar signaling pathways and occurring concurrently: circulating cancer cells constitute an ideal target for concurrent treatment with chemotherapy and antilineage-specific antibodies. Leukemia. 2003;18(1):1-10.
Patschan D, Krupincza K, Patschan S, Zhang Z, Hamby C, Goligorsky MS. Dynamics of mobilization and homing of endothelial progenitor cells after acute renal ischemia: modulation by ischemic preconditioning. American Journal of Physiology-Renal Physiology. 2006;291(1):F176-F85.
Lapidot T, Dar A, Kollet O. How do stem cells find their way home? Blood. 2005;106(6):1901-10.
Winkler IG, Barbier V, Wadley R, Zannettino AC, Williams S, Lévesque J-P. Positioning of bone marrow hematopoietic and stromal cells relative to blood flow in vivo: serially reconstituting hematopoietic stem cells reside in distinct nonperfused niches. Blood. 2010;116(3):375-85.
Winkler IG, Sims NA, Pettit AR, Barbier V, Nowlan B, Helwani F, et al. Bone marrow macrophages maintain hematopoietic stem cell (HSC) niches and their depletion mobilizes HSCs. Blood. 2010;116(23):4815-28.
Morabito F, Tomaino A, Cristani M, Martino M, Minciullo P, Saija A, et al. ‘In vivo’time course of plasma myeloperoxidase levels after granulocyte colony‐stimulating factor‐induced stem cell mobilization. Transfusion Medicine. 2005;15(5):425-8.
Papayannopoulou T. Current mechanistic scenarios in hematopoietic stem/progenitor cell mobilization. Blood. 2004;103(5):1580-5.
Pelus LM. Peripheral blood stem cell mobilization: new regimens, new cells, where do we stand. Current opinion in hematology. 2008;15(4):285.
Quesenberry PJ, Colvin G, Abedi M. Perspective: fundamental and clinical concepts on stem cell homing and engraftment: a journey to niches and beyond. Experimental hematology. 2005;33(1):9-19.
Weidt C, Niggemann B, Kasenda B, Drell TL, Zanker KS, Dittmar T. Stem cell migration: a quintessential stepping stone to successful therapy. Current stem cell research & therapy. 2007;2(1):89-103.
Papayannopoulou T. Bone marrow homing: the players, the playfield, and their evolving roles. Current opinion in hematology. 2003;10(3):214-9.
Chute JP. Stem cell homing. Current opinion in hematology. 2006;13(6):399-406.
Laird DJ, von Andrian UH, Wagers AJ. Stem cell trafficking in tissue development, growth, and disease. Cell. 2008;132(4):612-30.
Quesenberry PJ, Becker PS. Stem cell homing :rolling, crawling, and nesting. Proceedings of the National Academy of Sciences. 1998;95(26):15155-7.
Frenette PS, Subbarao S, Mazo IB, Von Andrian UH, Wagner DD. Endothelial selectins and vascular cell adhesion molecule-1 promote hematopoietic progenitor homing to bone marrow. Proceedings of the National Academy of Sciences. 1998;95(24):14423-8.
Simmons PJ, Zannettino A, Gronthos S, Leavesley D. Potential adhesion mechanisms for localisation of haemopoietic progenitors to bone marrow stroma. Leukemia & lymphoma. 1994;12(5-6):353-63.
Aiuti A, Webb I, Bleul C, Springer T, Gutierrez-Ramos J. The chemokine SDF-1 is a chemoattractant for human CD34+ hematopoietic progenitor cells and provides a new mechanism to explain the mobilization of CD34+ progenitors to peripheral blood. The Journal of experimental medicine. 1997;185(1):111-20.
Kim CH, Broxmeyer HE. In vitro behavior of hematopoietic progenitor cells under the influence of chemoattractants: stromal cell–derived factor-1, steel factor, and the bone marrow environment. Blood. 1998;91(1):100-10.
Janowska-Wieczorek A, Marquez LA, Nabholtz J-M, Cabuhat ML, Montaño J, Chang H, et al. Growth factors and cytokines upregulate gelatinase expression in bone marrow CD34+ cells and their transmigration through reconstituted basement membrane. Blood. 1999;93(10):3379-90.
Berthou C, Marolleau J-P, Lafaurie C, Soulie A, Dal Cortivo L, Bourge J, et al. Granzyme B and perforin lytic proteins are expressed in CD34+ peripheral blood progenitor cells mobilized by chemotherapy and granulocyte colony-stimulating factor. Blood. 1995;86(9):3500-6.
Moore MA. Cytokine and chemokine networks influencing stem cell proliferation, differentiation, and marrow homing. Journal of Cellular Biochemistry. 2002;85(S38):29-38.
Gangenahalli GU, Singh VK, Verma YK, Gupta P, Sharma RK, Chandra R, et al. Hematopoietic stem cell antigen CD34: role in adhesion or homing. Stem cells and development. 2006;15(3):305-13.
Forde S, Tye BJ, Newey SE, Roubelakis M, Smythe J, McGuckin CP, et al. Endolyn (CD164) modulates the CXCL12-mediated migration of umbilical cord blood CD133+ cells. Blood. 2007;109(5):1825-33.
Ratajczak M, Kim C, Wojakowski W, Janowska-Wieczorek A, Kucia M, Ratajczak J. Innate immunity as orchestrator of stem cell mobilization. Leukemia. 2010;24(10):1667-75.
Delgado MB, Clark‐Lewis I, Loetscher P, Langen H, Thelen M, Baggiolini M, et al. Rapid inactivation of stromal cell‐derived factor‐1 by cathepsin G associated with lymphocytes. European journal of immunology. 2001;31(3):699-707.
Hartz B, Volkmann T, Irle S, Loechelt C, Neubauer A, Brendel C. α4 integrin levels on mobilized peripheral blood stem cells predict rapidity of engraftment in patients receiving autologous stem cell transplantation. Blood. 2011;118(8):2362-5.
Jung Y, Wang J, Song J, Shiozawa Y, Wang J, Havens A, et al. Annexin II expressed by osteoblasts and endothelial cells regulates stem cell adhesion, homing, and engraftment following transplantation. Blood. 2007;110 - .09 28:)1(
Qian H, Johansson S, McCourt P, Smedsrød B, Ekblom M, Johansson S. Stabilins are expressed in bone marrow sinusoidal endothelial cells and mediate scavenging and cell adhesive functions. Biochemical and biophysical research communications. 200 - .6 220:)0(009;0
Hosokawa K, Arai F, Yoshihara H, Iwasaki H, Nakamura Y,Gomei Y, et al. Knockdown of N-cadherin suppresses the long-term engraftment of hematopoietic stem cells. Blood. 2010;116(4):554-63.
Lapidot T, Kollet O. The essential roles of the chemokine SDF-1 and its receptor CXCR4 in human stem cell homing and repopulation of transplanted immune-deficient NOD/SCID and NOD/SCID/B2mnull mice. Leukemia. 2002;16(10):1992-2003.
Gómez-Moutón C, Lacalle RA, Mira E, Jiménez-Baranda S, Barber DF, Carrera AC, et al. Dynamic redistribution of raft domains as an organizing platform for signaling during cell chemotaxis. The Journal of cell biology. 2004;164(5):759-68.
Nguyen DH, Taub D. CXCR4 function requires membrane cholesterol: implications for HIV infection. The Journal of Immunology. 2002;168(8):4121-6.
Wysoczynski M, Reca R, Ratajczak J, Kucia M, Shirvaikar N, Honczarenko M, et al. Incorporation of CXCR4 into membrane lipid rafts primes homing-related responses of hematopoietic stem/progenitor cells to an SDF-1 gradient. Blood. 2005;105(1):40-8.
Cheung P, Allis CD, Sassone-Corsi P. Signaling to chromatin through histone modifications. Cell. 2000;103(2):263-71.
Bug G, Gül H, Schwarz K, Pfeifer H, Kampfmann M, Zheng X, et al. Valproic acid stimulates proliferation and self-renewal of hematopoietic stem cells. Cancer Research. 2005;65(7):2537-41.
Elfenbein GJ, Sackstein R. Primed marrow for autologous and allogeneic transplantation: a review comparing primed marrow to mobilized blood and steady-state marrow. Experimental hematology. 2004;32(4):327-39.
Janowska-Wieczorek A, Majka M, Kijowski J, Baj-Krzyworzeka M, Reca R, Turner AR, et al. Platelet-derived microparticles bind to hematopoietic stem/progenitor cells and
enhance their engraftment. Blood. 2001;98(10):3143-9.
Al-Nedawi K, Meehan B, Rak J. Messengers and mediators of tumor progression. Cell cycle. 2009;8(13):2014-8.
Cancelas JA, Jansen M, Williams DA. The role of chemokine activation of Rac GTPases in hematopoietic stem cell marrow homing, retention, and peripheral mobilization. Experimental hematology. 2006;34(8):976-85.
Cancelas JA, Lee AW, Prabhakar R, Stringer KF, Zheng Y, Williams DA. Rac GTPases differentially integrate signals regulating hematopoietic stem cell localization. Nature medicine. 2005;11(8):886-91.
Charest PG, Firtel RA. Feedback signaling controls leading-edge formation during chemotaxis. Current opinion in genetics & development. 2006;16(4):339-47.
Lévesque J-P, Hendy J, Takamatsu Y, Williams B, Winkler IG, Simmons PJ. Mobilization by either cyclophosphamide or granulocyte colony-stimulating factor transforms the bone marrow into a highly proteolytic environment. Experimental hematology. 2002;30(5):440-9.
Aicher A ,Heeschen C, Mildner-Rihm C, Urbich C, Ihling C, Technau-Ihling K, et al. Essential role of endothelial nitric oxide synthase for mobilization of stem and progenitor cells. Nature medicine. 2003;9(11):1370-6.
Lohi J, Wilson CL, Roby JD, Parks WC. Epilysin, a novel human matrix metalloproteinase (MMP-28) expressed in testis and keratinocytes and in response to injury. Journal of Biological Chemistry. 2001;276(13):10134-44.
Elkington P, O'Kane C, Friedland J. The paradox of matrix metalloproteinases in infectious disease. Clinical & Experimental Immunology. 2005;142(1):12-20.
McCawley LJ, Matrisian LM. Matrix metalloproteinases: they're not just for matrix anymore! Current opinion in cell biology. 2001;13(5):534-40.
Parks WC, Wilson CL, López-Boado YS. Matrix metalloproteinases as modulators of inflammation and innate immunity. Nature Reviews Immunology. 2004;4(8):617-29.
Butler GS, Overall CM. Updated biological roles for matrix metalloproteinases and new “intracellular” substrates revealed by degradomics. Biochemistry. 2009;48(46):10830-45.
Morrison CJ, Butler GS, Rodríguez D, Overall CM. Matrix metalloproteinase proteomics: substrates, targets, and therapy. Current opinion in cell biology. 2009;21(5):645-53.
Nagase H, Visse R ,Murphy G. Structure and function of matrix metalloproteinases and TIMPs. Cardiovascular research. 2006;69(3):562-73.
Rodríguez D, Morrison CJ, Overall CM. Matrix metalloproteinases: what do they not do? New substrates and biological roles identified by murine models and proteomics. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research. 2010;1803(1):39-54.
Marquez-Curtis LA, Turner AR, Sridharan S, Ratajczak MZ, Janowska-Wieczorek A. The ins and outs of hematopoietic stem cells: studies to improve transplantation outcomes. Stem Cell Reviews and Reports. 2011;7(3):590-607.
Devine H, Tierney DK, Schmit-Pokorny K, McDermott K. Mobilization of hematopoietic stem cells for use in autologous transplantation. Clinical journal of oncology nursing. 2010;14(2):212-22.
Fruehauf S, Seeger T, Topaly J. Innovative strategies for PBPC mobilization. Cytotherapy. 2005;7(5):438-46.
Greinix HT, Worel N. New agents for mobilizing peripheral blood stem cells. Transfusion and Apheresis Science. 2009;41(1 :) 66 -
Jacoub JF, Suryadevara U, Pereyra V, Colón D, Fontelonga A, MacKintosh FR, et al. Mobilization strategies for the collection of peripheral blood progenitor cells: results from a pilot study of delayed addition G-CSF following chemotherapy and review of the literature. Experimental hematology. 2006;34(11):1443-50.
Moog R. Management strategies for poor peripheral blood stem cell mobilization. Transfusion and Apheresis Science. 2008;38(3):229-36.
Pusic I, DiPersio J. The use of growth factors in hematopoietic stem cell transplantation. Current pharmaceutical design. 2008;14(20):1950-61.
Rosenbeck LL, Srivastava S, Kiel PJ. Peripheral blood stem cell mobilization tactics. Annals of Pharmacotherapy. 2010;44(1):107-16.
Vose JM ,Ho AD, Coiffier B, Corradini P, Khouri I, Sureda A, et al. Advances in mobilization for the optimization of autologous stem cell transplantation. Leukemia & lymphoma. 2009;50(9):1412-21.
Perseghin P, Terruzzi E, Dassi M, Baldini V, Parma M, Coluccia
P, et al. Management of poor peripheral blood stem cell mobilization: incidence, predictive factors, alternative strategies and outcome. A retrospective analysis on 2177 patients from three major Italianinstitutions. Transfusion and Apheresis Science. 200 0 ; 11 ( 1 :) 00 - 6 .
Nervi B, Link DC, DiPersio JF. Cytokines and hematopoietic stem cell mobilization. Journal of cellular biochemistry. 2006;99(3):690-705.
Abkowitz JL, Robinson AE, Kale S, Long MW, Chen J. Mobilization of hematopoietic stem cells during homeostasis and after cytokine exposure. Blood. 2003;102(4):1249-53.
Spira J, Plyushch OP, Andreeva TA, Andreev Y. Prolonged bleeding-free period following prophylactic infusion of recombinant factor VIII reconstituted with pegylated liposomes. Blood. 2006;108(12):3668-73.
Powell J. Liposomal approach towards the development of a longer‐acting factor VIII. Haemophilia. 2007;13(s2):23-8.
Smith TJ, Khatcheressian J, Lyman GH, Ozer H, Armitage JO, Balducci L, et al. 2006 update of recommendations for the use of white blood cell growth factors: an evidence-based clinical practice guideline. Journal of Clinical Oncology. 2006;24(19):3187-205.
Xie Y, Yin T, Wiegraebe W, He XC, Miller D, Stark D, et al. Detection of functional haematopoietic stem cell niche using real-time imaging. Nature. 2008;457(7225):97-101.
Xie Y, Yin T, Wiegraebe W, He XC, Miller D, Stark D, et al. Detection of functional haematopoietic stem cell niche using real-time imaging. Nature. 2010;466:1134.
Papayannopoulou T, Scadden DT. Stem-cell ecology and stem cells in motion. Blood. 2008;111(8):3923-30.
Schulz C, von Andrian UH, Massberg S. Hematopoietic stem and progenitor cells: their mobilization and homing to bone marrow and peripheral tissue. Immunologic research. 2009;44(1-3):160-8.
Gertz MA. review: Current status of stem cell mobilization. British journal of haematology. 2010;150(6):647-62.
Valenzuela-Fernández An, Planchenault T, Baleux F, Staropoli I, Le-Barillec K, Leduc D, et al. Leukocyte elastase negatively regulates stromal cell-derived factor-1 (SDF-1)/CXCR4 binding and functions by amino-terminal processing of SDF-1 and CXCR4. Journal of Biological Chemistry. 2002;277(18):15677-89.
Heissig B, Hattori K, Dias S, Friedrich M, Ferris B ,Hackett NR, et al. Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. cell. 2002;109(5):625-37.
Kobbe G, Bruns I, Fenk R, Czibere A, Haas R. Pegfilgrastim for PBSC mobilization and autologous haematopoietic SCT. Bone marrow transplantation. 2009;43(9):669-77.
Hattori K, Heissig B, Tashiro K, Honjo T, Tateno M, Shieh J-H, et al. Plasma elevation of stromal cell–derived factor-1 induces mobilization of mature and immature hematopoietic progenitor and stem cells. Blood. 2001;97(11):3354-60.
Pelus LM, Bian H, King AG, Fukuda S. Neutrophil-derived MMP-9 mediates synergistic mobilization of hematopoietic stem and progenitor cells by the combination of G-CSF and the chemokines GROβ/CXCL2 and GROβT/CXCL2δ4. Blood. 2004;103(1):110-9.
Shpall EJ, Wheeler CA, Turner SA, Yanovich S, Brown RA, Pecora AL, et al. A randomized phase 3 study of peripheral blood progenitor cell mobilization with stem cell factor and filgrastim in high-risk breast cancer patients. Blood. 1999;93(8):2491-501.
Kucia M, Reca R, Miekus K, Wanzeck J, Wojakowski W, Janowska‐Wieczorek A, et al. Trafficking of Normal Stem Cells and Metastasis of Cancer Stem Cells Involve Similar Mechanisms: Pivotal Role of the SDF –1‐CXCR4 Axis. Stem cells. 2005;23(7):879-94.
Jalili A, Shirvaikar N, Marquez-Curtis LA, Turner AR, Janowska-Wieczorek A. The HGF/c-Met axis synergizes with G-CSF in the mobilization of hematopoietic stem/progenitor cells. Stem cells and development. 200 - .11 1110:)2(10;0
Christopher MJ, Liu F, Hilton MJ, Long F, Link DC. Suppression of CXCL12 production by bone marrow osteoblasts is a common and critical pathway for cytokine-induced mobilization. Blood. 2009;114(7):1331-9.
Lévesque J-P, Hendy J ,Takamatsu Y, Simmons PJ, Bendall LJ. Disruption of the CXCR4/CXCL12 chemotactic interaction during hematopoietic stem cell mobilization induced by GCSF or cyclophosphamide. The Journal of clinical investigation. 2003;111(2):187-96.
Semerad CL, Christopher MJ, Liu F, Short B, Simmons PJ, Winkler I, et al. G-CSF potently inhibits osteoblast activity and CXCL12 mRNA expression in the bone marrow. Blood. 2005;106(9):3020-7.
Petit I, Szyper-Kravitz M, Nagler A, Lahav M, Peled A, Habler L, et al. G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nature immunology. 2002;3(7):687-94.
Kim HK, Sierra MDLL, Williams CK, Gulino AV, Tosato G. G-CSF down-regulation of CXCR4 expression identified as a mechanism for mobilization of myeloid cells. Blood. 2006;108(3):812-20.
Crump MP, Gong JH, Loetscher P, Rajarathnam K, Amara A, Arenzana‐Seisdedos F, et al. Solution structure and basis for functional activity of stromal cell‐derived factor‐1; dissociation of CXCR4 activation from binding and inhibition of HIV‐1. The EMBO journal. 1997;16(23):6996-7007.
Kollet O, Dar A, Shivtiel S, Kalinkovich A, Lapid K, Sztainberg Y, et al. Osteoclasts degrade endosteal components and promote mobilization of hematopoietic progenitor cells. Nature medicine. 2006;12(6):657-64.
Velders GA, Fibbe WE. Involvement of Proteases in Cytokine‐Induced Hematopoietic Stem Cell Mobilization. Annals of the New York Academy of Sciences. 2005;1044(1):60-9.
Davis DA, Singer KE, Sierra MDLL, Narazaki M, Yang F, Fales HM, et al. Identification of carboxypeptidase N as an enzyme responsible for C-terminal cleavage of stromal cell-derived factor-1α in the circulation. Blood. 2005;105(12):4561-8.
Sierra MDLL, Yang F, Narazaki M, Salvucci O, Davis D, Yarchoan R, et al. Differential processing of stromal-derived factor-1α and stromal-derived factor-1β explains functional diversity. Blood. 2004;103(7):2452-9.
Marquez‐Curtis L, Jalili A, Deiteren K, Shirvaikar N, Lambeir AM, Janowska‐Wieczorek A. Carboxypeptidase M Expressed by Human Bone Marrow Cells Cleaves the C‐Terminal Lysine of Stromal Cell‐Derived Factor‐1α: Another Player in Hematopoietic Stem/Progenitor Cell Mobilization? Stem Cells. 2008;26(5):1211-20.
Gross J, Lapiere CM. Collagenolytic activity in amphibian tissues: a tissue culture assay. Proc Natl Acad Sci U S A. 1962;48(6):1014.
Manicone AM, McGuire JK, editors. Matrix metalloproteinasesas modulators of inflammation. Seminars in cell & developmental biology; 2008 :Elsevier.
Raaijmakers MH, Scadden DT. Evolving concepts on the microenvironmental niche for hematopoietic stem cells. Current opinion in hematology. 2008;15(4):301-6.
Mason T, Lord BI, Hendry JH. The development of spatial distributions of CFU‐S and in‐vitro CFC in femora of mice of different ages. British journal of haematology. 1989;73(4):455-61.
Majka M, Janowska-Wieczorek A, Ratajczak J, Ehrenman K, Pietrzkowski Z, Kowalska MA, et al. Numerous growth factors, cytokines, and chemokines are secreted by human CD34+ cells, myeloblasts, erythroblasts, and megakaryoblasts and regulate normal hematopoiesis in an autocrine/paracrine manner. Blood. 2001;97(10):3075-85.
Janowska-Wieczorek A, Marquez LA, Dobrowsky A, Ratajczak MZ, Cabuhat ML .Differential MMP and TIMP production by human marrow and peripheral blood CD34< sup>+ cells in response to chemokines. Experimental hematology. 2000;28(11):1274-85.
Barbolina MV, Stack MS, editors. Membrane type 1-matrix metalloproteinase: substrate diversity in pericellular proteolysis. Seminars in cell & developmental biology; 2008: Elsevier.
Poincloux R, Lizárraga F, Chavrier P. Matrix invasion by tumour cells: a focus on MT1-MMP trafficking to invadopodia. Journal of cell science. 2009 ; 188 ( 16 :) 0911 - 81 .
Lapidot T, Petit I. Current understanding of stem cell mobilization: the roles of chemokines, proteolytic enzymes, adhesion molecules, cytokines, and stromal cells. Experimental hematology. 2002;30(9):973-81.
Winkler IG, Levesque J-P. Mechanisms of hematopoietic stem cell mobilization: when innate immunity assails the cells that make blood and bone. Experimental hematology. 2006;34(8):996-1009.
Shirvaikar N, Reca R, Jalili A, Marquez-Curtis L, Fong Lee S, Ratajczak M, et al .CFU-megakaryocytic progenitors expanded ex vivo from cord blood maintain their in vitro homing potential and express matrix metalloproteinases. Cytotherapy. 2008;10(2):182-92.
Son BR, Marquez‐Curtis LA, Kucia M, Wysoczynski M, Turner AR, Ratajczak J ,et al. Migration of bone marrow and cord blood mesenchymal stem cells in vitro is regulated by stromal‐derived factor‐1‐CXCR4 and hepatocyte growth factor‐c‐met axes and involves matrix metalloproteinases. Stem cells. 2006;24(5):1254-64.
Sallusto F ,Baggiolini M. Chemokines and leukocyte traffic. Nature immunology. 2008;9(9):949-52.
Vermeulen M, Le Pesteur F, Gagnerault M-C, Mary J-Y, Sainteny F, Lepault F. Role of adhesion molecules in the homing and mobilization of murine hematopoietic stem and progenitor cells. Blood. 1998;92(3):894-900.
Lee S, Im SA, Yoo ES, Nam EM, Lee M, Ahn JY, et al. Mobilization Kinetics of CD34+ Cells in Association with Modulation of CD44 and CD31 Expression during Continuous Intravenous Administration of G‐CSF in Normal Donors. Stem Cells. 2000;18(4):281-6.
Rashidi N, Adams GB. The influence of parathyroid hormone on the adult hematopoietic stem cell niche. Current osteoporosis reports. 2009;7(2):53-7.
Chavakis E, Urbich C, Dimmeler S. Homing and engraftment of progenitor cells: a prerequisite for cell therapy. Journal of molecular and cellular cardiology. 2008;45(4):514-22.
Saba F, Soleimani M, Atashi A, Mortaz E, Shahjahani M, Roshandel E, et al. The Role of the Nervous System in Hematopoietic
Stem Cell Mobilization. Laboratory Hematology. 2013;19(3):8-16.
.0 Méndez-Ferrer S, Michurina TV, Ferraro F, Mazloom AR, MacArthur BD, Lira SA, et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature. 2010;466(7308):829-34.
- Abstract Viewed: 760 times
- PDF Downloaded: 509 times