Investigating the Mechanism of Arsenic-induced Ferroptosis in the Skin
International Journal of Medical Toxicology and Forensic Medicine,
Vol. 13 No. 4 (2023),
14 Azar 2023
https://doi.org/10.32598/ijmtfm.v13i4.43485
Abstract
Background: Ferroptosis, an oxidative and iron-dependent cell death, is a new type of regulated cell death. There are few studies on the mechanisms of ferroptosis in the skin and related diseases. Arsenic is shown to induce ferroptosis cell death. This study aimed to decipher the relationship between arsenic exposure and ferroptosis cell death in the skin.
Methods: Arsenic-gene interactions were obtained. Then, skin-specific arsenic-gene interactions were screened. Ferroptosis-related genes were identified. Analysis of functional and biological interactions was performed to identify possible mechanisms.
Results: The arsenic-gene interactions and the ferroptosis-related genes showed an overlap of 59 genes. Functional enrichment, protein-protein interaction, and transcription factor (TF)/miRNA target gene interaction analyses were used to look into the mechanism of arsenic-induced ferroptosis in the skin. ACTB, CTNNB1, HSPA8, SRC, RACK1, CD44, and SQSTM1 were identified as key proteins. Gene ontology analysis of these proteins indicated the mitochondrial morphology and functionality changes following arsenic-induced ferroptosis in the skin. HIF1A and SP1 TFs regulate a large number of genes compared to other TFs. Ten miRNAs with high interaction with ferroptosis-associated genes were identified.
Conclusion: This work investigated the mechanism of arsenic-induced ferroptosis in the skin and identified key genes and regulators, and functional analysis highlighted the role of mitochondria in this skin exposure.
How to Cite
References
Medina-Pizzali M, Robles P, Mendoza M, Torres C. [Arsenic intake: Impact in human nutrition and health (Spanish)]. Revista peruana de medicina experimental y salud publica. 2018; 35(1):93-102. [DOI:10.17843/rpmesp.2018.351.3604] [PMID]
Rahaman MS, Rahman MM, Mise N, Sikder MT, Ichihara G, Uddin MK, et al. Environmental arsenic exposure and its contribution to human diseases, toxicity mechanism and management. Environmental Pollution. 2021; 289:117940. [DOI:10.1016/j.envpol.2021.117940] [PMID]
Rajiv SV, George M, Nandakumar G. Dermatological manifestations of arsenic exposure. Journal of Skin and Sexually Transmitted Diseases. 2023; 5(1):14-21. [DOI:10.25259/JSSTD_3_2022]
Hunt KM, Srivastava RK, Elmets CA, Athar M. The mechanistic basis of arsenicosis: Pathogenesis of skin cancer. Cancer Letters. 2014; 354(2):211-9. [DOI:10.1016/j.canlet.2014.08.016] [PMID]
Anderton H, Alqudah S. Cell death in skin function, inflammation, and disease. Biochemical Journal. 2022; 479(15):1621-51. [DOI:10.1042/BCJ20210606] [PMID]
Patki AH. Apoptosis: Its significance in dermatology. Indian Journal of Dermatology, Venereology and Leprology. 2002; 68(2):59-62. [PMID]
Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, et al. Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell. 2012; 149(5):1060-72. [DOI:10.1016/j.cell.2012.03.042] [PMID]
Sahoo K, Sharma A. Understanding the mechanistic roles of environmental heavy metal stressors in regulating ferroptosis: Adding new paradigms to the links with diseases. Apoptosis: An International Journal on Programmed Cell Death. 2023; 28(3-4):277-92. [DOI:10.1007/s10495-022-01806-0] [PMID]
Liu L, Lian N, Shi L, Hao Z, Chen K. Ferroptosis: Mechanism and connections with cutaneous diseases. Frontiers in Cell and Developmental Biology. 2023; 10:1079548. [DOI:10.3389/fcell.2022.1079548] [PMID]
Vats K, Kruglov O, Mizes A, Samovich SN, Amoscato AA, et al. Keratinocyte death by ferroptosis initiates skin inflammation after UVB exposure. Redox Biology. 2021; 47:102143. [DOI:10.1016/j.redox.2021.102143]
Davis AP, Wiegers TC, Johnson RJ, Sciaky D, Wiegers J, Mattingly CJ. Comparative Toxicogenomics Database (CTD): Update 2023. Nucleic Acids Research. 2023; 51(D1):D1257-62. [DOI:10.1093/nar/gkac833] [PMID]
Szklarczyk D, Santos A, Von Mering C, Jensen LJ, Bork P, Kuhn M. STITCH 5: Augmenting protein-chemical interaction networks with tissue and affinity data. Nucleic Acids Research. 2016; 44(D1):D380-4. [DOI:10.1093/nar/gkv1277] [PMID]
Dennis G, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, et al. DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biology. 2003; 4(9):1-11. [DOI:10.1186/gb-2003-4-9-r60]
Zhou N, Yuan X, Du Q, Zhang Z, Shi X, Bao J, et al. FerrDb V2: Update of the manually curated database of ferroptosis regulators and ferroptosis-disease associations. Nucleic Acids Research. 2023; 51(D1):D571-82. [DOI:10.1093/nar/gkac935] [PMID]
Safran M, Dalah I, Alexander J, Rosen N, Iny Stein T, Shmoish M, et al. GeneCards Version 3: The human gene integrator. Database: The Journal of Biological Databases and Curation. 2010; 2010:baq020. [DOI:10.1093/database/baq020] [PMID]
Kanehisa M, Goto S. KEGG: Kyoto Encyclopedia Of Genes And Genomes. Nucleic Acids Research. 2000; 28(1):27-30. [DOI:10.1093/nar/28.1.27] [PMID]
Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, et al. STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Research. 2019; 47(D1):D607-13. [DOI:10.1093/nar/gky1131] [PMID]
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Research. 2003; 13(11):2498-504. [DOI:10.1101/gr.1239303] [PMID]
Franz M, Rodriguez H, Lopes C, Zuberi K, Montojo J, Bader GD, et al. GeneMANIA update 2018. Nucleic Acids Research. 2018; 46(W1):W60-4. [DOI:10.1093/nar/gky311] [PMID]
Huang HY, Lin YCD, Cui S, Huang Y, Tang Y, Xu J, et al. miRTarBase update 2022: An informative resource for experimentally validated miRNA-target interactions. Nucleic Acids Research. 2022; 50(D1):D222-30. [DOI:10.1093/nar/gkab1079] [PMID]
Han H, Cho JW, Lee S, Yun A, Kim H, Bae D, et al. TRRUST v2: An expanded reference database of human and mouse transcriptional regulatory interactions. Nucleic Acids Research. 2018; 46(D1):D380-6. [DOI:10.1093/nar/gkx1013] [PMID]
George CM, Sima L, Arias M, Mihalic J, Cabrera LZ, Danz D, et al. Arsenic exposure in drinking water: An unrecognized health threat in Peru. Bulletin of the World Health Organization. 2014; 92(8):565-72. [DOI:10.2471/BLT.13.128496] [PMID]
Huang HW, Lee CH, Yu HS. Arsenic-induced carcinogenesis and immune dysregulation. International Journal of Environmental Research and Public Health. 2019; 16(15):2746. [DOI:10.3390/ijerph16152746] [PMID]
Sun X, Ou Z, Xie M, Kang R, Fan Y, Niu X, et al. HSPB1 as a novel regulator of ferroptotic cancer cell death. Oncogene. 2015; 34(45):5617-25. [DOI:10.1038/onc.2015.32] [PMID]
Lemarie A, Morzadec C, Bourdonnay E, Fardel O, Vernhet L. Human macrophages constitute targets for immunotoxic inorganic arsenic. The Journal of Immunology. 2006; 177(5):3019-27. [DOI:10.4049/jimmunol.177.5.3019] [PMID]
Chan EF, Gat U, McNiff JM, Fuchs E. A common human skin tumour is caused by activating mutations in beta-catenin. Nature Genetics. 1999; 21(4):410-3. [DOI:10.1038/7747] [PMID]
Chang YW, Singh KP. Arsenic-induced neoplastic transformation involves epithelial-mesenchymal transition and activation of the β-catenin/c-Myc pathway in human kidney epithelial cells. Chemical Research in Toxicology. 2019; 32(6):1299-309. [DOI:10.1021/acs.chemrestox.9b00089] [PMID]
Liu Y, Zhou L, Xu Y, Li K, Zhao Y, Qiao H, et al. Heat shock proteins and ferroptosis. Frontiers in Cell and Developmental Biology. 2022; 10:864635. [DOI:10.3389/fcell.2022.864635] [PMID]
Bernstam L, Nriagu J. Molecular aspects of arsenic stress. Journal of Toxicology and Environmental Health. Part B, Critical Reviews. 2000; 3(4):293-322. [DOI:10.1080/109374000436355] [PMID]
Cirotti C, Taddei I, Contadini C, Pepe G, De Bardi M, Borsellino G, et al. NRF2 connects Src tyrosine kinase to ferroptosis resistance in glioblastoma. bioRxiv. 2023:2023. [DOI:10.1101/2023.05.08.539792]
Wu H, Wang F, Ta N, Zhang T, Gao W. The multifaceted regulation of mitochondria in ferroptosis. Life (Basel, Switzerland). 2021; 11(3):222. [DOI:10.3390/life11030222] [PMID]
Partridge MA, Huang SX, Hernandez-Rosa E, Davidson MM, Hei TK. Arsenic induced mitochondrial DNA damage and altered mitochondrial oxidative function: Implications for genotoxic mechanisms in mammalian cells. Cancer Research. 2007; 67(11):5239-47. [DOI:10.1158/0008-5472.CAN-07-0074] [PMID]
Xiao R, Wang S, Guo J, Liu S, Ding A, Wang G, et al. Ferroptosis-related gene NOX4, CHAC1 and HIF1A are valid biomarkers for stomach adenocarcinoma. Journal of Cellular and Molecular Medicine. 2022; 26(4):1183-93. [DOI:10.1111/jcmm.17171] [PMID]
Yang YC, Zhang MY, Liu JY, Jiang YY, Ji XL, Qu YQ. Identification of ferroptosis-related hub genes and their association with immune infiltration in chronic obstructive pulmonary disease by bioinformatics analysis. International Journal of Chronic Obstructive Pulmonary Disease. 2022; 17:1219-36. [DOI:10.2147/COPD.S348569] [PMID]
Shao Y, Wang K, Xiong X, Liu H, Zhou J, Zou L, et al. Comprehensive analysis of ferroptosis-related markers for the clinical and biological value in gastric cancer. Oxidative Medicine and Cellular Longevity. 2021; 2021:8893663. [DOI:10.1155/2021/6659282] [PMID]
Velkova I, Pasino M, Khalid Z, Menichini P, Martorana E, Izzotti A, et al. Modulation of ferroptosis by microRNAs in human cancer. Journal of Personalized Medicine. 2023; 13(5):719. [DOI:10.3390/jpm13050719] [PMID]
Ghafouri-Fard S, Shoorei H, Dabiri Oskuei S, Hussen BM, Rasool Abdullah SR, Taheri M, et al. The interaction between miRNAs and hazardous materials. Non-coding RNA Research. 2023; 8(4):507-19. [DOI:10.1016/j.ncrna.2023.06.005] [PMID]
- Abstract Viewed: 341 times
- pdf Downloaded: 335 times