The Potential Anti-inflammatory Effect of Spirulina Platensis on an in Vitro Model of Celiac Disease
International Journal of Medical Toxicology and Forensic Medicine,
Vol. 13 No. 4 (2023),
14 December 2023
https://doi.org/10.32598/ijmtfm.v13i4.42998
Abstract
Background: Celiac disease (CD) is a prevalent autoimmune enteropathy triggered by the ingestion of gluten. The management of CD involves adhering to a gluten-free diet (GFD). Recent studies have been actively exploring potential supplementary or alternative therapies for individuals with CD. The primary objective of the present study was to assess the effectiveness of Spirulina platensis in regulating the intestinal barrier-related gene expression and alleviating inflammation and oxidative stress associated with CD in PT-gliadin-triggered Caco-2 cells.
Methods: S. platensis extracts and a pepsin/trypsin (PT) digest of gliadin were prepared and exposed to the human colon carcinoma Caco-2 cell line. Cell viability was assessed. Total RNA was extracted from Caco-2 cells and cDNA synthesis was performed. A quantitative real-time polymerase chain reaction (qRT-PCR) assay was conducted to evaluate the mRNA levels of interleukin (IL)-6, transforming growth factor beta (TGF-β), COX-2, nuclear factor kappa B (NF-κB), ZO-1, and occludin.
Results: Treating Caco-2 cells with S. platensis alone (P=0.01 for both) or in combination with PT-gliadin (P=0.004 and P=0.02, respectively) resulted in decreased IL-6 expression and increased occludin mRNA expression. Additionally, S. platensis extract enhanced Zo-1 mRNA levels (P=0.002) and reduced NF-κB mRNA expression (P=0.02). The combination of gliadin and S. platensis led to decreased mRNA expression of COX-2 (P=0.03) and NF-κB (P=0.04). No significant differences were observed in TGF-β mRNA expression between the studied groups (P>0.05).
Conclusion: Additional investigation is needed to examine the influence of interactions between S. platensis and gliadin regarding the comprehensive response of CD to gliadin, encompassing the activation of gluten-sensitive immune cells.
How to Cite
References
Taraghikhah N, Ashtari S, Asri N, Shahbazkhani B, Al-Dulaimi D, Rostami-Nejad M, et al. An updated overview of spectrum of gluten-related disorders: Clinical and diagnostic aspects. BMC Gastroenterology. 2020; 20(1):258. [DOI:10.1186/s12876-020-01390-0] [PMID]
Asri N, Rostami-Nejad M. The facts of celiac disease; a comprehensive review. International Journal of Celiac Disease. 2019; 7(2):48-52. [Link]
Shewry P. What is gluten-why is it special? Frontiers in Nutrition. 2019; 6:101. [DOI:10.3389/fnut.2019.00101] [PMID]
Fasano A. Zonulin, regulation of tight junctions, and autoimmune diseases. Annals of the New York Academy of Sciences. 2012; 1258(1):25-33. [DOI:10.1111/j.1749-6632.2012.06538.x] [PMID]
Sturgeon C, Fasano A. Zonulin, a regulator of epithelial and endothelial barrier functions, and its involvement in chronic inflammatory diseases. Tissue Barriers. 2016; 4(4):e1251384. [DOI:10.1080/21688370.2016.1251384] [PMID]
Ferretti G, Bacchetti T, Masciangelo S, Saturni L. Celiac disease, inflammation and oxidative damage: A nutrigenetic approach. Nutrients. 2012; 4(4):243-57. [DOI:10.3390/nu4040243] [PMID]
Domsa EM, Filip GA, Olteanu D, Baldea I, Clichici S, Muresan A, et al. Gold nanoparticles phytoreduced with Cornus mas extract mitigate some of gliadin effects on Caco-2 cells. Journal of Physiology and Pharmacology : An Official Journal of the Polish Physiological Society. 2020; 71(2). [DOI:10.26402/jpp.2020.2.04] [PMID]
Aspasia S, Emmanuela-Kalliopi K, Nikolaos T, Eirini S, Ioannis S, Anastasia M. The gluten-free diet challenge in adults with coeliac disease: The hellenic survey. PEC Innovation. 2022; 1:100037. [DOI:10.1016/j.pecinn.2022.100037] [PMID]
Asri N, Rostami-Nejad M, Rezaei-Tavirani M, Razzaghi M, Asadzadeh-Aghdaei H, Zali MR. Novel therapeutic strategies for celiac disease. Middle East Journal of Digestive Diseases. 2020; 12(4):229-37. [PMID] [PMCID]
Liu W, Ruan R. Chapter 14 - Microalgae-based biomaterials for environmental remediation and functional use. In: Ngo H, Guo W, Pandey A, Chang JS, Lee DJ, editors. Biomass, biofuels, and biochemicals. Amsterdam: Elsevier; 2022. [DOI:10.1016/B978-0-323-96142-4.00015-4]
Ho JN, Watson RR, Lee J. Chapter 11 - dietary supplements, immune modulation, and diabetes control. In: Watson RR, Preedy VR, editors. Bioactive food as dietary interventions for diabetes. Amsterdam: Elsevier; 2013. [DOI:10.1016/B978-0-12-397153-1.00011-1]
Abdel-Daim MM, Farouk SM, Madkour FF, Azab SS. Anti-inflammatory and immunomodulatory effects of Spirulina platensis in comparison to dunaliella salina in acetic acid-induced rat experimental colitis. Immunopharmacology and Immunotoxicology. 2015; 37(2):126-39. [DOI:10.3109/08923973.2014.998368] [PMID]
Al-Qahtani WH, Binobead MA. Anti-inflammatory, antioxidant and antihepatotoxic effects of spirulina platensis against d-galactosamine induced hepatotoxicity in rats. Saudi Journal of Biological Sciences. 2019; 26(4):647-52. [DOI:10.1016/j.sjbs.2018.01.003] [PMID]
Abdel-Moneim AE, El-Saadony MT, Shehata AM, Saad AM, Aldhumri SA, Ouda SM, et al. Antioxidant and antimicrobial activities of Spirulina platensis extracts and biogenic selenium nanoparticles against selected pathogenic bacteria and fungi. Saudi Journal of Biological Sciences. 2022; 29(2):1197-209. [DOI:10.1016/j.sjbs.2021.09.046] [PMID]
Manai F, Azzalin A, Gabriele F, Martinelli C, Morandi M, Biggiogera M, et al. The in vitro effects of enzymatic digested gliadin on the functionality of the autophagy process. International Journal of Molecular Sciences. 2018; 19(2):635. [DOI:10.3390/ijms19020635] [PMID]
Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH. Mechanisms underlying inflammation in neurodegeneration. Cell. 2010; 140(6):918-34. [DOI:10.1016/j.cell.2010.02.016] [PMID]
Sharma N, Bhatia S, Chunduri V, Kaur S, Sharma S, Kapoor P, et al. Pathogenesis of celiac disease and other gluten related disorders in wheat and strategies for mitigating them. Frontiers in Nutrition. 2020; 7:6. [DOI:10.3389/fnut.2020.00006] [PMID]
Drago S, El Asmar R, Di Pierro M, Grazia Clemente M, Tripathi A, et al. Gliadin, zonulin and gut permeability: Effects on celiac and non-celiac intestinal mucosa and intestinal cell lines. Scandinavian Journal of Gastroenterology. 2006; 41(4):408-19. [DOI:10.1080/00365520500235334] [PMID]
Dolfini E, Elli L, Dasdia T, Bufardeci B, Colleoni MP, Costa B, et al. In vitro cytotoxic effect of bread wheat gliadin on the LoVo human adenocarcinoma cell line. Toxicology in vitro: An International Journal Published in Association With BIBRA. 2002; 16(4):331-7. [DOI:10.1016/S0887-2333(02)00017-6] [PMID]
Maiuri MC, De Stefano D, Mele G, Iovine B, Bevilacqua MA, Greco L, et al. Gliadin increases iNOS gene expression in interferon-gamma-stimulated RAW 264.7 cells through a mechanism involving NF-kappa B. Naunyn-Schmiedeberg’s Archives of Pharmacology. 2003; 368(1):63-71. [DOI:10.1007/s00210-003-0771-y] [PMID]
Rivabene R, Mancini E, De Vincenzi M. In vitro cytotoxic effect of wheat gliadin-derived peptides on the Caco-2 intestinal cell line is associated with intracellular oxidative imbalance: Implications for coeliac disease. Biochimica et Biophysica Acta. 1999; 1453(1):152-60. [DOI:10.1016/S0925-4439(98)00095-7] [PMID]
Tucková L, Novotná J, Novák P, Flegelová Z, Kveton T, Jelínková L, et al. Activation of macrophages by gliadin fragments: Isolation and characterization of active peptide. Journal of Leukocyte Biology. 2002; 71(4):625-31. [DOI:10.1189/jlb.71.4.625] [PMID]
Ramedani N, Seidita A, Asri N, Azimirad M, Yadegar A, Jahani-Sherafat S, et al. The gliadin hydrolysis capacity of B. longum, L. acidophilus, and L. plantarum and their protective effects on Caco-2 cells against gliadin-induced inflammatory responses. Nutrients. 2023; 15(12):2769. [DOI:10.3390/nu15122769] [PMID]
Ma TY, Iwamoto GK, Hoa NT, Akotia V, Pedram A, Boivin MA, et al. TNF-alpha-induced increase in intestinal epithelial tight junction permeability requires NF-kappa B activation. American Journal of Physiology Gastrointestinal and Liver Physiology. 2004; 286(3):G367-76. [DOI:10.1152/ajpgi.00173.2003] [PMID]
Sobolewski C, Cerella C, Dicato M, Ghibelli L, Diederich M. The role of cyclooxygenase-2 in cell proliferation and cell death in human malignancies. International Journal of Cell Biology. 2010; 2010:215158. [DOI:10.1155/2010/215158] [PMID]
Desai SJ, Prickril B, Rasooly A. Mechanisms of phytonutrient modulation of Cyclooxygenase-2 (COX-2) and inflammation related to cancer. Nutrition and Cancer. 2018; 70(3):350-75. [DOI:10.1080/01635581.2018.1446091] [PMID]
Varasteh S, Fink-Gremmels J, Garssen J, Braber S. α-Lipoic acid prevents the intestinal epithelial monolayer damage under heat stress conditions: Model experiments in Caco-2 cells. European Journal of Nutrition. 2018; 57(4):1577-89. [DOI:10.1007/s00394-017-1442-y] [PMID]
Yu T, Wang Y, Chen X, Xiong W, Tang Y, Lin L. Spirulina platensis alleviates chronic inflammation with modulation of gut microbiota and intestinal permeability in rats fed a high-fat diet. Journal of Cellular and Molecular Medicine. 2020; 24(15):8603-13. [DOI:10.1111/jcmm.15489] [PMID]
Yoshimoto S, Okada K, Hayashi O. Immuno-regulatory and anti-inflammatory actions of phycocyanin on Caco-2/U937 cells co-culture as a model of the intestinal barrier. Functional Foods in Health and Disease. 2019; 9(7):466-83. [DOI:10.31989/ffhd.v9i7.611]
Morsy MA, Gupta S, Nair AB, Venugopala KN, Greish K, El-Daly M. Protective effect of spirulina platensis extract against dextran-sulfate-sodium-induced ulcerative colitis in rats. Nutrients. 2019; 11(10):2309. [DOI:10.3390/nu11102309] [PMID]
Mazloomi SM, Samadi M, Davarpanah H, Babajafari S, Clark CCT, Ghaemfar Z, et al. The effect of spirulina sauce, as a functional food, on cardiometabolic risk factors, oxidative stress biomarkers, glycemic profile, and liver enzymes in nonalcoholic fatty liver disease patients: A randomized double-blinded clinical trial. Food Science & Nutrition. 2022; 10(2):317-28. [DOI:10.1002/fsn3.2368] [PMID]
Molaaghaee-Rouzbahani S, Asri N, Sapone A, Baghaei K, Yadegar A, Amani D, et al. Akkermansia muciniphila exerts immunomodulatory and anti-inflammatory effects on gliadin-stimulated THP-1 derived macrophages. Scientific Reports. 2023; 13(1):3237. [DOI:10.1038/s41598-023-30266-y] [PMID]
Hajinabi Y, Khamene EA, Forouzesh F, Gholam-Mostafaei FS, Ahangari SAH, Lamouki RM, et al. The genes expression of NF-kB inflammation pathway in treated celiac disease patients. New Zealand Journal of Medical Laboratory Science. 2022; 76(2):55-9. [Link]
- Abstract Viewed: 362 times
- pdf Downloaded: 336 times