Review Article

Effectiveness of Neurogenesis in treating Children with Cerebral Palsy


Iranian Journal of Child Neurology, Vol. 6 No. 2 (2012), 30 April 2012, Page 1-8

How to Cite this Article: Amirsalary S, Dehghan L, Dalvand H, Haghgoo H. Effectiveness of Neurogenesis in treating children with Cerebral Palsy. Iran J Child Neurol 2012;6(2):1-8.



Tissue-specific stem cells divide to generate different cell types for the purpose oftissue repair in the adult. The aim of this study was to detect the significance ofneurogenesis in the central nervous system in patients with cerebral palsy (CP).

Materials & Methods

A search was made in Medline, CINAHL, PubMed, ISI Web of Science andGoogle Scholar from 1995 to February 2011. The outcomes measured in thereview were classified to origins, proliferation, and migration of new neurons,and neurogenesis in CP.


According to the review of articles, neurogenesis persists in specific brainregions throughout lifetime and can be enhanced from endogenous progenitorcells residing in the subventricular zone by growth factors or neurotrophicfactors and rehabilitation program.


Most of the studies have been conducted in the laboratory and on animals,more work is required at the basic level of stem cell biology, in the developmentof human models, and finally in well-conceived clinical trials.


1. Buonomano DV, Merzenich MM. Cortical plasticity: from synapses to maps. Annu Rev Neurosci 1998; 21:149-86.

2. Haghgoo H. Fundemental of neurosciences. 1st ed. Tehran; USWR Press; 2011.

3. Payne BR, Lomber SG. Reconstructing functional systems after lesions of cerebral cortex. Nat Rev Neurosci 2001 Dec;2(12):911-9.

4. Bax M, Goldstein M, Rosenbaum P, Leviton A, Paneth N, Dan B, et al. Proposed definition and classification of cerebral palsy. Dev Med Child Neurol 2005 Apr;47(8):571-6.

5. Joghataei M, Kazem M. Barresi sathe niazhaie jamee be khadamate behzisti colle keshvar [persian].Tehran: University of. Social Welfare and Rehabilitation Sciences; 1990.

6. Johnson A. Prevalence and characteristics of children with cerebral palsy in Europe. Dev Med Child Neurol 2002 Sep;44(9):633-40.

7. Yeargin-Allsopp M, Van Naarden Braun K, Doernberg NS, Benedict RE, Kirby RS, Durkin MS. Prevalence of cerebral palsy in 8-year-old children in three areas of the United States in 2002: a multisite collaboration. Pediatrics 2008 Mar;121(3):547-54.

8. Uvebrant P. Hemiplegic cerebral palsy. Aetiology and outcome. Acta Paediatr Scand Suppl 1988;345:1-100.

9. Marin-Padilla M. Developmental neuropathology and impact of perinatal brain damage. II: white matter lesions of the neocortex. J Neuropathol Exp Neurol 1997 Mar;56(3):219-35.

10. Tzarouchi LC, Astrakas LG, Zikou A, Xydis V, Kosta P, Andronikou S, et al. Periventricular leukomalacia in preterm children: assessment of grey and white matter and cerebrospinal fluid changes by MRI. Pediatr Radiol 2009 Dec;39(12):1327-32.11. Dehghan L, Dalvand H. Neuroplasticity after stroke [persian]. Modern rehabilitation 2008;1(4).

12. Sanai N, Tramontin AD, Quiñones-Hinojosa A, Barbaro NM, Gupta N, Kunwar S, et al. Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature 2004 Feb;427(6976):740-4.

13. Doetsch F, Garcia-Verdugo JM, Alvarez-Buylla A. Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain. J Neurosci 1997 Jul 1;17(13):5046-61.

14. Laywell ED, Rakic P, Kukekov VG, Holland EC, Steindler DA. Identification of a multipotent astrocytic stem cell in the immature and adult mouse brain. Proc Natl Acad Sci U S A 2000 Dec 5;97(25):13883-8.

15. Seri B, Garcia-Verdugo JM, McEwen BS, AlvarezBuylla A. Astrocytes give rise to new neurons in the adult mammalian hippocampus. J Neurosci 2001 Sep 15;21(18):7153-60.

16. Seri B, Garcia-Verdugo JM, Collado-Morente L, McEwen BS, Alvarez-Buylla A. Cell types, lineage, and architecture of the germinal zone in the adult dentate gyrus. J Comp Neurol 2004 Oct 25;478(4):359-78.

17. Sugiura S, Kitagawa K, Tanaka S, Todo K, OmuraMatsuoka E, Sasaki T, et al. Adenovirus-mediated gene transfer of heparin-binding epidermal growth factor-like growth factor enhances neurogenesis and angiogenesis after focal cerebral ischemia in rats. Stroke 2005 Apr;36(4):859-64.

18. Ellsworth JL, Garcia R, Yu J, Kindy MS. Fibroblast growth factor-18 reduced infarct volumes and behavioral deficits after transient occlusion of the middle cerebral artery in rats. Stroke 2003 Jun;34(6):1507-12.

19. Wada K, Sugimori H, Bhide PG, Moskowitz MA, Finklestein SP. Effect of basic fibroblast growth factor treatment on brain progenitor cells after permanent focal ischemia in rats. Stroke 2003 Nov;34(11):2722-8.

20. Baldauf K, Reymann KG. Influence of EGF/bFGF treatment on proliferation, early neurogenesis and infarct volume after transient focal ischemia. Brain Res 2005 Sep 21;1056(2):158-67.

21. Chmielnicki E, Benraiss A, Economides AN, Goldman SA. Adenovirally expressed noggin and brain-derived neurotrophic factor cooperate to induce new medium spiny neurons from resident progenitor cells in the adult striatal ventricular zone. J Neurosci 2004 Mar 3;24(9):2133-42.

22. Cho SR, Benraiss A, Chmielnicki E, Samdani A, Economides A, Goldman SA. Induction of neostriatal neurogenesis slows disease progression in a transgenic murine model of Huntington disease. J Clin Invest 2007 Oct;117(10):2889-902.

23. Gonzalez-Perez O, Jauregui-Huerta F, GalvezContreras AY. Immune system modulates the function of adult neural stem cells. Curr Immunol Rev 2010 Aug 1;6(3):167-73.

24. Doetsch F, Alvarez-Buylla A. Network of tangential pathways for neuronal migration in adult mammalian brain. Proc Natl Acad Sci 1996 Dec 10;93(25):14895-900.

25. Weickert CS, Webster MJ, Colvin SM, Herman MM, Hyde TM, Weinberger DR, et al. Localization of epidermal growth factor receptors and putative neuroblasts in human subependymal zone. J Comp Neurol 2000 Jul 31;423(3):359-72.

26. Magavi SS, Leavitt BR, Macklis JD. Induction of neurogenesis in the neocortex of adult mice. Nature 2000 Jun 22;405(6789):951-5.

27. Lois C, Garcia-Verdugo JM, Alvarez-Buylla A. Chain migration of neuronal precursors. Science. 1996 Feb 16;271(5251):978-81.

28. Wichterle H, Garcia-Verdugo JM, Alvarez-Buylla A. Direct evidence for homotypic, glia-independent neuronal migration. Neuron 1997 May;18(5):779-91.

29. Lois C, Alvarez-Buylla A. Long-distance neuronal migration in the adult mammalian brain. Science 1994 May 20;264(5162):1145-8.

30. Mason HA, Ito S, Corfas G. Extracellular signals that regulate the tangential migration of olfactory bulb neuronal precursors: inducers, inhibitors, and repellents. J Neurosci 2001 Oct 1;21(19):7654-63.

31. Lundy-Ekman L. Neuroscience: fundamentals for rehabilitation. 3rd ed. Philadelphia: WB Saunders; 2007.

32. Mizuno K, Hida H, Masuda T, Nishino H, Togari H. Pretreatment with low doses of erythropoietin ameliorates brain damage in periventricular leukomalacia by targeting late oligodendrocyte progenitors: a rat model. Neonatology 2008;94(4):255-66.

33. Lin S, Fan LW, Pang Y, Rhodes PG, Mitchell HJ, Cai Z. IGF-1 protects oligodendrocyte progenitor cells and improves neurological functions following cerebral hypoxia-ischemia in the neonatal rat. Brain Res 2005 Nov 23;1063(1):15-26.

34. Gonzalez FF, Abel R, Almli CR, Mu D, Wendland M, Ferriero DM. Erythropoietin sustains cognitive function and brain volume after neonatal stroke. Dev Neurosci 2009;31(5):403-11.

35. Goldman SA. Adult neurogenesis: from canaries to the clinic. J Neurobiol 1998 Aug;36(2):267-86.

36. Tureyen K, Vemuganti R, Bowen KK, Sailor KA, Dempsey RJ. EGF and FGF-2 infusion increases post ischemic neural progenitor cell proliferation in the adult rat brain. Neurosurgery 2005 Dec;57(6):1254-63; discussion -63.

37. Im SH, Yu JH, Park ES, Lee JE, Kim HO, Park KI, et al. Induction of striatal neurogenesis enhances functional recovery in an adult animal model of neonatal hypoxic-ischemic brain injury. Neuroscience 2010 Aug 11;169(1):259-68.

38. Greenough WT, Black JE, Wallace CS. Experience and brain development. Child Dev 1987 Jun;58(3):539-59.39. Daadi MM, Davis AS, Arac A, Li Z, Maag AL, Bhatnagar R, et al. Human neural stem cell grafts modify microglial response and enhance axonal sprouting in neonatal hypoxic-ischemic brain injury. Stroke 2010 Mar;41(3):516-23.

40. Lee JA, Kim BI, Jo CH, Choi CW, Kim EK, Kim HS, et al. Mesenchymal stem-cell transplantation for hypoxic-ischemic brain injury in neonatal rat model. Pediatr Res 2010 Jan;67(1):42-6.

41. Yasuhara T, Matsukawa N, Yu G, Xu L, Mays RW, Kovach J, et al. Behavioral and histological characterization of intrahippocampal grafts of human bone marrow-derived multipotent progenitor cells in neonatal rats with hypoxic-ischemic injury. Cell Transplant 2006;15(3):231-8.

42. van Velthoven CT, Kavelaars A, van Bel F, Heijnen CJ. Repeated mesenchymal stem cell treatment after neonatal hypoxia-ischemia has distinct effects on formation and maturation of new neurons and oligodendrocytes leading to restoration of damage, corticospinal motor tract activity, and sensorimotor function. J Neurosci 2010 Jul 14;30(28):9603-11.

43. Chopp M, Li Y, Zhang ZG. Mechanisms underlying improved recovery of neurological function after stroke in the rodent after treatment with neurorestorative cellbased therapies. Stroke 2009 Mar;40(3 Suppl):S143-5.

44. Buhnemann C, Scholz A, Bernreuther C, Malik CY, Braun H, Schachner M, et al. Neuronal differentiation of transplanted embryonic stem cell-derived precursors in stroke lesions of adult rats. Brain 2006 Dec;129(Pt 12):3238-48.

45. Daadi MM, Lee SH, Arac A, Grueter BA, Bhatnagar R, Maag AL, et al. Functional engraftment of the medial ganglionic eminence cells in experimental stroke model. Cell Transplant 2009;18(7):815-26.

46. van Velthoven CT, Kavelaars A, van Bel F, Heijnen CJ. Regeneration of the ischemic brain by engineered stem cells: fuelling endogenous repair processes. Brain Res Rev 2009 Jun;61(1):1-13.

47. Qu R, Li Y, Gao Q, Shen L, Zhang J, Liu Z, et al. Neurotrophic and growth factor gene expression profiling of mouse bone marrow stromal cells induced by ischemic brain extracts. Neuropathology 2007 Aug;27(4):355-63.

48. Li Y, Chopp M. Marrow stromal cell transplantation in stroke and traumatic brain injury. Neuroscience Letters 2009; 456 (3): 120-123.

Psychiatric Aspects of Childhood Epilepsy


Iranian Journal of Child Neurology, Vol. 6 No. 2 (2012), 30 April 2012, Page 9-18

How to Cite this Article: Pattanayak RD, Sagar R. Psychiatric Aspects of Childhood Epilepsy. Iran J Child Neurol 2012;6(2):9-18.

Childhood epilepsy is a chronic, recurrent disorder of unprovoked seizures. Theonset of epilepsy in childhood has significant implications for brain growth anddevelopment. Seizures may impair the ongoing neurodevelopmental processes and compromise the child’s intellectual and cognitive functioning, leading totremendous cognitive, behavioral and psychosocial consequences. Children with epilepsy are at increased risk for emotional and behavioral problems. In addition to the direct effects of epilepsy, there are multiple contributory factors including the underlying neurological abnormalities and adverse effects of medication. This review discusses the current understanding of various psychiatric aspects of childhood epilepsy, including the neuropsychological, behavioral and psychosocial concomitants of childhood epilepsy.


1. Shinnar S, Pellock JM. Update on the epidemiology and prognosis of pediatric epilepsy. J Child Neurol 2002;7 suppl 1:4-17.

2. Murphy CC, Trevathan E, Yeargin-Allsopp M. Prevalence of epilepsy and epileptic seizures in 10-year-old children: results from the Metropolitan Atlanta Developmental Disabilities Study. Epilepsia 1995;36(9):866-72.

3. Placencia M, Shorvon SD, Paredes V, Bimos C, Sander JW, Suarez J, et al. Epileptic seizures in an Andean region of Ecuador ncidence and prevalence and regional variation. Brain 1992;115:771-82.

4. Henkin Y, Sadeh M, Kivity S, Shabtai E, KishonRabin L, Gadoth N. Cognitive function in idiopathic generalized epilepsy of childhood. Dev Med Child Neurol 2005;47:126-32.

5. Rodenburg R, Stams GJ, Meijer AM, Aldenkamp AP, Dekovic M. Psychopathology in children with epilepsy: a meta-analysis. J Pediatr Psychol 2005;30(6):453-68.

6. Caplan R, Siddarth P, Gurbani S, Ott D, Sankar R, Shields WD. Psychopathology and pediatric complex partial seizures: seizure-related, cognitive, and linguistic variables. Epilepsia 2005;45:273-81.

7. International League Against Epilepsy- Epidemiology commission. Available from: URL: Accessed September 1, 2011.

8. Eriksson KJ, Koivikko MJ. Prevalence, classification and severity of epilepsy and epileptic syndromes in children. Epilepsia 1997;38:1275-82.

9. Sillanpaa M, Jalava M, Kaleva O, Shinnar S. Long-term prognosis of seizures with onset in childhood. N Engl J Med 1998;338(24):1715-22.

10. Berg AT, Shinnar S, Levy SR Testa FM, Smith-Rapaport S, Beckerman B. Early development of intractable epilepsy in children: a prospective study. Neurology 2001;56:1445-52.

11. Rutter M, Graham P, Yule W. A neuropsychiatric study in childhood. Clinics in developmental medicine no 35/36.Philadelphia: JB Lippincott; 1970.P.175-85.

12. Solomon, GE, Pfeffer C. Neurobehavioral abnormalities in epilepsy. In: Frank Y, editor. Pediatric behavioral epilepsy: New York: CRC press; 1996. P. 269-87.

13. Farwell JR, Dodrill CB, Batzel LW. Neuropsychological abilities of children with epilepsy. Epilepsia 1985;26:395-400.

14. Nolan MA, Redoblado MA, Lah S, Sabaz M, Lawson JA, Cunningham AM, et al. Intelligence in childhood epilepsy syndromes. Epilepsy Res 2003;53:139-50.

15. Berg AT, Langfitt JT, Testa FM, Levy SR, DiMario F, Westerveld M, et al. Residual cognitive effects of uncomplicated idiopathic and cryptogenic epilepsy. Epilepsy Behav 2008;13:614-9.

16. van Mil SG, Reijs RP, van Hall MH, Aldenkamp AP. Neuropsychological profile of children with cryptogenic localization related epilepsy. Child Neuropsychol 2008;14:291-302.

17.Williams J, Griebel ML, Dykman RA. Neuropsychological patterns in pediatric epilepsy. Seizure 1998;7:223-8.

18. Goodman R. Brain disorders. In: Rutter M, Taylor EA, editors. Child and adolescent psychiatry, 4th edition. Oxford: Blackwell Scientific Publications; 2002. P. 241-60.

19. Elger CE, Helmstaedter C, Kurthen M. Chronic epilepsy and cognition. Lancet Neurol 2004;3(11):663-72.

20. Bujoreanu, IS, Ibeziako P, DeMaso DR. Psychiatric concerns in pediatric epilepsy. Child Adolesc Psychiatr Clin N Am 2010;19(2):371-86.

21. Hermann BP, Lin, JJ, Jones, JE, Seidenberg S. The emerging architecture of neuropsychological impairment in epilepsy. Neurol Clin 2009;27(4):881-907.

22. Hermann B, Seidenberg M, Bell B, Rutecki P, Sheth R, Ruggles K, et al. The neurodevelopmental impact of childhood-onset temporal lobe epilepsy on brain structure and function. Epilepsia 2002;43(9):1062-71.

23. Loring DW, Meador KJ. Cognitive side effects of antiepileptic drugs in children. Neurology 2004;62(6):872-7.

24. McDermott S, Mani S, Krishnaswami S. A populationbased analysis of specific behavior problems associated with childhood seizures. J Epilepsy 1995;8:110-8.

25. Davies S, Heyman I, Goodman, R. A population survey of mental health problems in children with epilepsy. Dev Med Child Neurol 2003;45(5):292-5.

26. Kaufmann R, Goldberg-Stern H, Shuper A. Attentiondeficit disorders and epilepsy in childhood: incidence, causative relations and treatment possibilities. J Child Neurol 2009;24(6):727-33.

27. Buelow JM, Austin JK, Perkins SM, Shen J, Dunn DW, Fastenau PS. Behavior and mental health problems in children with epilepsy and low IQ. Dev Med Child Neurol 2003;45(10):683-92.

28.Williams J, Lange B, Phillips T, Sharp GB, DelosReyes E, Bates S, et al. The course of inattentive and hyperactiveimpulsive symptoms in children with new onset seizures. Epilepsy Behav 2002;3(6):517-21.

29. Hermann B, Seidenberg M, Jones J. The neurobehavioural comorbidities of epilepsy: can a natural history be developed? Lancet Neurol 2008;7(2):151-60.

30. Schoenfeld J, Seidenberg M, Woodard A, Hecox K, Inglese C, Mack K, et al. Neuropsychological and behavioral status of children with complex partial seizures. Dev Med Child Neurol 1999;41(11):724-31.

31. Austin JK, Caplan R. Behavioral and psychiatric comorbidities in pediatric epilepsy: toward an integrative model. Epilepsia 2007;48(9):1639-51.

32. Ott D, Caplan R, Guthrie D, Siddarth P, Komo S, Shields WD, et al. Measures of psychopathology in children with complex partial seizures and primary generalized epilepsy with absence. J Am Acad Child Adolesc Psychiatry 2001;40(8):907-14.

33. Mathiak KA, Luba M, Mathiak, K, Karzel, K, Wolanczyk, Szczepanik E, et al. Quality of life in childhood epilepsy with lateralized epileptogenic foci. BMC Neurol 2010;10:69.

34. Bulteau C, Jambaque I, Viguier D, Kieffer V, Dellatolas G, Dulac O. Epileptic syndromes, cognitive assessment and school placement: a study of 251 children. Dev Med Child Neurol 2000;42(5):319-27.

35.Noeker M, Haverkamp F. Neuropsychological deficiencies as a mediator between CNS dysfunction and inattentive behaviour in childhood epilepsy. Dev Med Child Neurol 2003;45(10):717-8.

36. Sillanpää M, Helen Cross J. The psychosocial impact of epilepsy in childhood. Epilepsy Behav 2009;15 Suppl 1:S5-10.

37. Miller V, Palermo TM, Grewe SD. Quality of life in pediatric epilepsy: Demographic and disease-related predictors and comparison with healthy controls. Epilepsy Behav 2003,4(1):36-42.

38. Kokkonen J, Kokkonen ER, Saukkonen AL, Pennanen P. Psychosocial outcome of young adults with epilepsy in childhood. J Neurol Neurosurg Psychiatry 1997;62(3):265-8.

39. Pal DK, Chaudhury G, Sengupta S, Das T: Social integration of children with epilepsy in rural India. Soc Sci Med 2002;54(12):1867-74.

40. Modi AC. The impact of a new pediatric epilepsy diagnosis on parents: parenting stress and activity patterns. Epilepsy Behav 2009;14(1):237-42.

41. Shore C, Austin J, Musick B, Dunn D, McBride A, Creasy K. Psychosocial care needs of parents of children with new-onset seizures. J Neurosci Nurs 1998;30:169-74.

42. Rodenburg R, Marie Meijer A, Dekovic´ M, Aldenkamp AP. Family predictors of psychopathology in children with epilepsy. Epilepsia 2006;47(3):601-14.

43.Mims J. Self-esteem, behavior, and concerns surrounding epilepsy in siblings of children with epilepsy. J Child Neurol 1997;12(3):187-92.

44. Pavlou E, Gkampeta A. Learning disorders in children with epilepsy. Childs Nerv Sys 2011;27(3):373-9.

45. Fastenau PS, Shen J, Dunn DW, Perkins SM, Hermann BP, Austin JK. Neuropsychological predictors of academic underachievement in pediatric epilepsy: moderating roles of demographic, seizure, and psychosocial variables. Epilepsia 2004;45(10):1261-72.

46. Austin JK, Caplan R. Behavioral and psychiatric comorbidities in pediatric epilepsy: toward an integrative model. Epilepsia 2007;48(9):1639-51.

47. Austin JK, McNelis AM, Shore CP, Dunn DW, Musick B. A feasibility study of a family seizure management program ‘Be seizure smart’. J Neurosci Nurs 2002;34:30-7.

48. Ronen GM, Streiner DL, Rosenbaum P. Health-related quality of life in childhood epilepsy: Moving beyond ‘seizure control with minimal adverse effects’. Health Qual Life Outcomes 2003;1:36.

49. Smith K, Siddarth P, Zima B, Sankar R, Mitchell W Gowrinathan R, et al. Unmet mental health needs in pediatric epilepsy: insights from providers. Epilepsy Behav 2007;11(3):401-8.

50. Goldstein J, Plioplys S, Zelko F, Mass S, Corns C, Blaufuss R, et al. Multidisciplinary approach to childhood epilepsy: exploring the scientific rationale and practical aspects of implementation. J Child Neurol 2004;19(5):362-78.

51. Achenbach TM. Manual for the child behavior checklist/4-18 and 1991 profile. Burlington, VT: Univ. of Vermont Department of Psychiatry; 1991.

52. Gadow KD, Sprafkin J. Child symptom inventory-4 norms manual. Stony Brook, NY: Checkmate Plus; 1997.

53. Sabaz M, Cairns DR, Lawson JA, Nheu N, Bleasel AF, Bye AM. Validation of a new quality of life scale for children with epilepsy. Epilepsia 2000;41(6):765-74.

54. Camfield C, Breau L, Camfield P. Impact of pediatric epilepsy on the family: a new scale for clinical and research use. Epilepsia 2001;42(1):104-12.

55. Lewis MA, Salas I, de la Sota A, Chiofalo N, Leake B. Randomized trial of a program to enhance the competencies of children with epilepsy. Epilepsia 1990;31(1):101-9.

56. Ziegler RG, Erba G, Holden L, Dennison H. The coordinated psychosocial and neurologic care of children with seizures and their families. Epilepsia 2000;41(6):732-43.

57.Wagner JL, Smith G. Psychosocial intervention in pediatric epilepsy: a critique of the literature. Epilepsy Behav 2006;8(1):39-49.

58. Macrodimitris S, Sherman EM, Forde S, Tellez-Zenteno JF, Metcalfe A, Hernandez-Ronquillo L, et al. Psychiatric outcomes of epilepsy surgery: a systematic review. Epilepsia 2011;52(5):880-90.

59. Chin RF, Cumberland PM, Pujar SS, Peckham C, Ross EM, Scott RC. Outcomes of childhood epilepsy years at age 33 years: a population-based birth-cohort study. Epilepsia 2011;52(8):1513-21.

Research Article

Posterior Fossa Tumor in Children

Seyed Mahmoud TABATABAEI, Afsoun SEDDIGHI, Amir Saied SEDDIGHI

Iranian Journal of Child Neurology, Vol. 6 No. 2 (2012), 30 April 2012, Page 19-24

How to Cite this Article: Tabatabaei SM, Seddighi A, Seddighi AS. Posterior Fossa Tumor in Children. Iran. J. Child. Neurol 2012;6(2): 19-24.



Primary brain tumors are the most common solid neoplasms of childhood, representing 20% of all pediatric tumors. The best current estimates place the incidence between 2.76 and 4.28/100,000 children per year. Compared with brain tumors in adults, a much higher percentage of pediatric brain tumors arise in the posterior fossa. Infratentorial tumors comprise as many as two thirds of all pediatric brain tumors in some large series. Tumor types that most often occur in the posterior fossa include medulloblastoma, ependymoma, cerebellar astrocytoma and brainstem glioma.

Materials & Methods

All pediatric cases of posterior fossa tumor that were considered for surgery from 1981 to 2011 were selected and the demographic data including age, gender and tumor characteristics along with the location and pathological diagnosis were recorded. The surgical outcomes were assessed according to pathological diagnosis.


Our series consisted of 84 patients (52 males, 32 females). Cerebellar symptoms were the most common cause of presentation (80.9%) followed by headache (73.8%) and vomiting (38.1%). The most common histology was medulloblastoma (42.8%) followed by cerebellar astrocytoma (28.6%), ependymoma (14.3%), brainstem glioma (7.2%) and miscellaneous pathologies (e.g., dermoid,  andtuberculoma) (7.2%).


The diagnosis of brain tumors in the general pediatric population remains challenging. Most symptomatic children require several visits to a physician before the correct diagnosis is made. These patients are often misdiagnosed for gastrointestinal disorders. Greater understanding of the clinical presentation of these tumors and judicious use of modern neuroimaging techniques should lead to more efficacious therapies.


1. Mehta V, Chapman A, McNeely PD, Walling S, Howes WJ. Latency between symptom onset and diagnosis of  pediatric brain tumors: an Eastern Canadian geographic study. Neurosurgery 2002 Aug;51(2):365-73.

2. Mueller B, Gurney JG. Epidemiology of pediatric brain tumors. Neurosurg Clin N Am 1992 Oct;3(4):715-21.

3. Albright A, Wisoff JH, Zeltzer PM, Deutsch M, Finlay

J, Hammond D. Current neurosurgical treatment of medulloblastomas in children. A report from the Children’s Cancer Study Group. Pediatr Neurosci 1989;15(6):276-82.

4. Albright AL. Posterior fossa tumors. Neurosurg Clin N Am. 1992 Oct;3(4):881-91.

5. Healey E, Barnes PD, Kupsky WJ, Scott RM, Sallan SE, Black PM. The prognostic significance of postoperative residual tumor in ependymoma. Neurosurgery 1991 May;28(5):666-71.

6. Park T, Hoffman HJ, Hendrick EB, Humphreys RP, Becker LE. Medulloblastoma: clinical presentation and management. Experience at the hospital for sick children, Toronto, 1950-1980. J Neurosurg 1983 Apr;58(4):543-52.

7. Allen LC. Childhood brain tumors. Current status of clinical trials in newly diagnosed and recurrent disease. Pediatr Clin North Am 1985 Jun;32(3):633-51.

8. Laurent JP,Cheek WR. Brain tumors in children. J Pediatr Neurosci 1985;1:15-32.

9. O’Brien DF, Caird J, Kennedy M, Roberts GA, Marks JC, Allcutt DA. Posterior fossa tumours in childhood: evaluation of presenting clinical features. Irish Med J 2001 Feb;94(2):52-3.

10. Bronstein KS. Epidemiology and classification of brain tumours. Cri Care Nurs Clin North Am 1995;7:79-89.

11. Lannering B, Marky I, Nordborg C. Brain tumors in children and adolescence in west Sweden 1970-1984. Epidemiology and survival Cancer. l990 Aug 1;66(3):604-9.

12. Cushing H. Experiences with cerebellar astrocytomas: a critical review of 26 cases. Surg Gynae Obstet 1931;52:129-204.

13. Geissinger JD. Astrocytomas of the cerebellum in children. Long-term study. Arch Neurol 1971 Feb;24(2):125-35.

14. Pascual - Castroviejo I, Raimondi AJ, Choux M, Di Rocco C. Functional basis of posterior fossa symptoms and signs. eds. Posterior fossa tumours. New York: Springer Verlag; 1993;12-21.

15. Cohen ME, Duner PK. Tumours of the brain and spinal cord including leukemic infiltrates. In: Swaiman KF, editor. Pediatric neurology principles and practice. St. Louis: Mosby; 1991. p. 94550.

16. Bronstein KS. Epidemiology and classification of brain tumors. Crit Care Nurs Clin North Am 1995 Mar;7(1):79-89.

17. GOL A. Cerebellar astrocytomas in children. Am J Dis Child 1963 Jul;106:21-4.

18. Hojer C, Hildebrandt G, Lanfermann H, Schroder R, Haupt WF. Pilocyticastrocytomas of the posterior fossa. A follow-up study in 33 patients. Acta Neurochir (Wien) 1994;129(3-4):131-9.

19. Lassman LP, Arjona VE. Pontine gliomas of childhood. Lancet 1967 Apr 29;1(7496):913-5.

20. Reigel DH, Scarff TB, Woodford JE. Biopsy of pediatric brain stem tumors. Childs Brain. 1979;5(3):329-40.

21. Griwan MS, Sharma BS, Mahajan RK, Kak VK. Value of precraniotomy shunts in children with posterior fossa tumours. Childs Nerv Syst 1993 Dec;9(8):462-5.

22. Raimondi AJ, Tomita T. Hydrocephalus and infratentorial tumors. Incidence, clinical picture, and treatment. J Neurosurg 1981 Aug;55(2):17482.

23. Jamjoom AB, Jamjoom ZA, al-Rayess M. Intraventricular and leptomeningeal dissemination of a pilocytic cerebellar astrocytoma in a child with a ventriculoperitoneal shunt: case report Br J Neurosurg. 1998 Feb;12(1):568.

24. Vaquero J, Cabezudo JM, de Sola RG, Nombela L. Intratumoral hemorrhage in posterior fossa tumors after ventricular drainage. Report of two cases. J Neurosurg 1981 Mar;54(3):406-8.

25. Hoffman HJ, Hendrick EB, Humphreys RP. Metastasis via ventriculoperitoneal shunt in patients with medulloblastoma. J Neurosurg 1976 May;44(5):562-6.

26. Hirsch J, Renier D, Czernichow P, Benveniste L, PierreKahn A. Medulloblastoma in childhood: survival and functional results. Acta Neurochir 1979;48:1-15.

27. Abdollahzadeh-Hosseini SM, Rezaishiraz H, Allahdini F. Acta Medica Iranica 2006;44(2):89-94.


Is Interictal EEG Correlated with the Seizure Type in Idiopathic (Genetic) Generalized Epilepsies?

Ali Akbar ASADI-POOYA, Mehrdad EMAMI

Iranian Journal of Child Neurology, Vol. 6 No. 2 (2012), 30 April 2012, Page 25-28

How to Cite this Article: Asadi-pooya AA, Emami M. Is Interictal EEG Correlated with the Seizure Type in Idiopathic (Genetic) Generalized Epilepsies? Iran J Child Neurol 2012;6(2): 25-28.



We investigated the correlation between different interictal EEG abnormalities observed in patients with idiopathic (genetic) generalized epilepsies (IGEs) and their seizure types.

Material & Methods

In this cross-sectional study, all patients with the diagnosis of IGE, were recruited in the outpatient epilepsy clinic at Shiraz University of Medical Sciences, Iran, from 2008 through 2010. Demographic variables and relevant clinical and EEG variables were summarized descriptively. Statistical analyses were performed using independent samples T-test, Chi square and Fisher's Exact tests to determine potentially significant differences.


Three-hundred thirty-six patients were diagnosed ashaving IGE. Interictal EEG findings in patients with generalized tonic-clonic seizure (GTCS) compared to patients without GTCS were not different. Abnormal EEG findings in patients with myoclonic seizures compared to patients without these were not different either. However, normal EEGs were more frequently observed in patients with history of myoclonic seizures (P = 0.0001). EEG findings in patients with absences compared to patients without absences were not different.


Interictal EEG cannot differentiate the seizure types and therefore different syndromes of IGEs. Polyspikes, 3-Hz generalized spike-wave (GSW) complexes and 3.5 - 6 Hz GSW complexes, alone or in combinations, could be observed in various seizure types and syndromes of IGE. The key element in making the correct diagnosis is a detailed clinical history.



  1. Panayiotopoulos CP. Idiopathic generalized epilepsies. In: Panayiotopoulos CP, editor. The epilepsies: seizures, syndromes and management. Oxford: Bladon Medical Publishing 2005. p. 271-348.
  2. Lagerlund TD, Cascino GD, Cicora KM, Sharbrough FW. Long-term electroencephalographic monitoring for diagnosis and management of seizures. Mayo Clin Proc 1996 Oct;71(10):1000-6.
  3. Betting LE, Mory SB, Lopes-Cendes I, Li LM, Guerreiro MM, Guerreiro CA et al. EEG features in idiopathic generalized epilepsy: clues to diagnosis. Epilepsia 2006 Mar;47(3):523-8.
  4. Yenjun S, Harvey AS, Marini C, Newton MR, King MA, Berkovic SF. EEG in adult-onset idiopathic generalized epilepsy. Epilepsia 2003 Feb;44(2):252-6.
  5. Blume WT, Lüders HO, Mizrahi E, Tassinari C, van Emde Boas W, Engel J Jr. Glossary of descriptive terminology for ictal semiology: report of the ILAE task force on classification and terminology. Epilepsia 2001;42(9):1212-8.
  6. Engel J Jr. A proposed diagnostic scheme for people with epileptic seizures and epilepsy: report of the ILAE task force on classification and terminology. Epilepsia 2001 Jun;42(6):796-803.
  7. Engel J. Jr. Report of the ILAE Classification Core Group. Epilepsia 2006 Sep;47(9):1558-68.
  8. Asadi-Pooya AA, Emami M. Effects of antiepileptic drugs on electroencephalographic findings in patients with idiopathic generalized epilepsies. Iran J Child Neurol 2011;5(4):33-6.
  9. Asadi-Pooya AA, Emami M, Nikseresht A. Early-onset versus typical childhood absence epilepsy; clinical and electrographic characteristics. Seizure 2012;21:273-5.
  10. Nordi DR. Idiopathic generalized epilepsies recognized by the International League Against Epilepsy. Epilepsia 2005;46(Suppl. 9):48-56.
  11. Panayiotopoulos CP. Syndromes of idiopathic generalized epilepsies not recognized by the International League Against Epilepsy. Epilepsia 2005;46(Suppl. 9):57-66.
  12. Asadi-Pooya AA, Sperling MR. Choices of antiepileptic drugs based on specific epilepsy syndromes and seizure types. In: Asadi-Pooya AA, Sperling MR. Antiepileptic Drugs: A Clinician’s Manual. Oxford, UK: Oxford University Press; 2009. p. 95-102.



Evaluation of Developmental Delay in Infants Who Came in for 6th Month Vaccination in Isfahan City Health Centers


Iranian Journal of Child Neurology, Vol. 6 No. 2 (2012), 30 April 2012, Page 29-32

How to Cite this Article: Yaghini O, Danesh F, Mahmoudian T, Beigi B. Evaluation of Developmental Delay in Infants Who Came in for 6th Month Vaccination in Isfahan City Health Centers. Iran J Child Neurol 2012;6(2): 29-32.



Developmental delay is one of the most common causes of conferring the pediatric neurologist. The main part of neurological growth and development occur in the first two years especially in the first 6 months of life. Metabolic or skeletal diseases are important causes of developmental delay. Early diagnosis of deviance from the normal diagram of development in lower ages is important.

Materials & Methods

Specific ages and stages questionnaires (ASQ) for 6 months was completed in the health centers for 800 infants conferring for their vaccination in Isfahan and the retest was performed at 24 months of age by ASQ and then these two questionnaires were compared.


10.5% of the infants were delayed in at least one domain. At 24 months, 38.4% of them remained delayed; 21.1% in one domain, 9.6% in two domains, 3.8% in four domains and 3.8% in five domains. Of the children who had problem in communication, 20%; in gross motor, 25%; in fine motor, 20%; and in problem solving, 30% remained delayed. In the personal social domain, none of the delayed children at 6 months remained delayed at 24 months.


ASQ is feasible, inexpensive, easy to use and was appreciated by the parents. It can be used as a screening test for detection of developmental delay in lower ages, but its results must be followed by other standard tests or diagnostic tools.


  1. Lewis R, Palfreg GS. The infant or young child with developmental delay. The New England J Med 1994;330:478-83.
  2. Cleary MA, Green A. Developmental Delay: when to suspect and how to investigate for an inborn error of metabolism. Arch Dis Child2005;90(11):1128-32.
  3. Schendel DE, Stockbauer JW, Hoffman HJ, Herman AA, Berg CJ, Schrann WF. Relation between very low birth weight and developmental delay among preschool children without disabilities. Am J Epidemiol 1997;146(9):740-9.
  4. Zimmer MH, Panko LM. Developmental status and service use among children in the child welfare system. Arch Pediatr Adolesc Med 2006;160(2):183-8.
  5. Michael V. Johston, Encephalopathy in Nelson text book of pediatrics 181 E . 2007.
  6. Platt, MJ, Cans C, Johnson A, Surman G, Topp M, et al. Trends in cerebral palsy among infants of very low birth weight (<1500 g) or born prematurely (<32 weeks) in 16 European centres: a database study. Lancet 2007; 369(9555):43-50.
  7. Robertson CM, Watt MJ, Yasui Y. Changes in the prevalence of cerebral palsy for children born very prematurely within a population-based program over 30 years. JAMA. 2007;297(24):2733-40.
  8. Lindsay NM, Healy GN, Colditz PB, Lingwood BE. Use of the Ages and Stages Questionnaire to predict outcome after hypoxic–ischemic encephalopathy in the neonate. J
  9. Pediatr Child Health 2008; 44(10):590-5.
  10. Yu LM, Hey E, Doyle LW, Farrell B, Spark P, Altman DG et al. Evaluation of the Ages and Stages Questionnaires in identifying children with neurosensory disability in the Magpie Trial follow-up study. Acta Paediatr 2007;96(12):1803-8.

10.  Squires J, Bricker D, Potter L. Revision of a parent completed development screening tool: Ages and Stages Questionnaires. J Pediatr Psychol. 1997;22(3):313-28.

11.  Glascoe FP. Screening for developmental and behavioral problems. Ment Retard Dev Disabil Res Rev 2005;11(3):173-9.

12.  Richter J, Janson H. A validation study of the Norwegian version of the Ages and Stages Questionnaires. Acta Paediatr 2007;96(5):748-52.

13.  Shashani S, Vameghi R, Azari N, Sajedi F, Kazemnejad A. Comparing the results of developmental screening of 4-60 months old children in Tehran using ASQ & PDQ.

  1. Iran Rehabil J 2011;11(14):3-7.

14.  Shashani S, Vameghi R, Azari N, Sajedi F, Kazemnejad A. Validity and reliability determination of Denver developmental screening test- II in 0-6 years old in Tehran. Iran J Pediatr. 2010;20(3):313-22.

15.  Jorina E, Andrew M, Elaine M, Faitb G. The Age and Stage Questionnaires: feasibility of use as a screening tool for children in Canada. Can Rural Med. 2008; 13(1):9-14.

16.  Gollenberg AI, Lynch CD, Jackson LW, Guinness BM, Msall ME. Concurrent validity of the parent-completed Ages and Stages Questionnaires, 2nd Ed. with the Bayley Scales of Infant Development IIin a low risk sample.Child Care Health Dev 2010;36(4):485-90.


Migraine Types and Triggering Factors in Children


Iranian Journal of Child Neurology, Vol. 6 No. 2 (2012), 30 April 2012, Page 33-38

How to Cite this Article: Nejad Biglari H, Karimzadeh P, Mohammadi Kord-kheyli M, Hashemi SM. Migraine Types and Triggering Factors in Children. Iran J  Child Neurol 2012;6(2):33-38.


Migraine is a common problem in children and the mean prevalence of migraine in Europe among 170,000 adults was 14.7% (8% in men and 17.6% in women) and in children and youth (36,000 participants), the prevalences were (9.2% for all, 5.2% in boys and 9.1% in girls) and the lifetime prevalences were (16, 11 and 20%, respectively).

To determine the epidemiology of migraine and evaluate migraine triggering factors in children.

Materials & Methods

Two-hundred twenty-eight children with a maximum age of 12 years who fulfilled the ICHD-II criteria for pediatric migraine were enrolled into the study.


This study shows that migraine is slightly more common in boys and its peak incidence is between ages 8 and 12 and most patients have three to five headache attacks per month. The pain has a tightening, stabbing or vague quality in about 70% of children with migraine and bilateral headache is slightly more common. The common triggering factors in children migraine were stress, noise, sleeplessness, hunger and light and the common relieving factors were sleep, analgesics, silence, darkness and eating.


Migraine is a common problem in children with an equal incidence in boys and girls before adolescence and more common in girls after adolescence.



  1. Powers SW, Andrasik F. Biobehavioral treatment, disability, and psychological effects of pediatric headache. Pediatr Ann 2005;34(6):461-5.
  2. Rosenblum RK, Fisher PG. A guide to children with acute and chronic headaches. J Pediatr Health Care 2001;15(5):229-35.
  3. Fallahzadeh H, Alihaydari M. Prevalence of migraine and tension-type headache among school children in Yazd, Iran. J Pediatr Neurosci 2011;6(2):106-9.
  4. Ayatollahi SM, Khosravi A. Prevalence of migraine and tension-type headache in primaryschool children in Shiraz. East Mediterr Health J 2006;12(6):809-17.
  5. Stovner LJ, Andree C. Prevalence of headache in Europe: a review for the Eurolight project. J Headache Pain 2010;11(4):289-99.
  6. Bille B. A 40-year follow-up of school children with migraine. Cephalalgia 1997;17(4):488-91; discussion 487.
  7. Bille B. Migraine and tension-type headache in children and adolescents. Cephalalgia 1996;16(2):78.
  8. Bille B. Migraine in childhood and its prognosis. Cephalalgia 1981;1(2):71-5.
  9. Lewis DW, Ashwal S, Dahl G, Dorbad D, Hirtz D, Prensky A, et al. Practice parameter: evaluation of children and adolescents with recurrent headaches: report of the Quality Standards Subcommittee of the American Academy of Neurology and the Practice Committee of the Child Neurology Society. Neurology 2002;59(4):490-8.
  10. Shah UH, Kalra V. Pediatric migraine. Int J Pediatr 2009;2009:424192.
  11. Fukui PT, Gonçalves TR, Strabelli CG, Lucchino NM, Matos FC, Santos JP, et al. Trigger factors in migraine patients. Arq Neuropsiquiatr 2008;66(3A):494-9.
  12. Neut D, Fily A, Cuvellier JC, Vallée L. The prevalence of triggers in paediatric migraine: a questionnaire study in 102 children and adolescents. J Headache Pain 2012;13(1):61-5.
  13. Lewis DW, Diamond S, Scott D, Jones V. Prophylactic treatment of pediatric migraine. Headache 2004;44(3):230-7.
  14. Barabas G, Matthews WS, Ferrari M. Childhood migraine and motion sickness. Pediatrics 1983;72(2):188-90.
  15. Holguin J, Fenichel G. Migraine. J Pediatr 1967;70(2):290-7.
  16. The International Classification of Headache Disorders: 2nd edition. Cephalalgia 2004;24 (Suppl 1):9-160.

Efficacy and Safety of Intravenous Sodium Valproate in Convulsive Status Epilepticus in Children in Shahid Sadoughi Hospital


Iranian Journal of Child Neurology, Vol. 6 No. 2 (2012), 30 April 2012, Page 39-44

How to Cite this Article: Fallah R, Yadegari Y, Salmani Nodushan M. Efficacy and Safety of Intravenous Sodium Valproate in Convulsive Status Epilepticus in Children in Shahid Sadoughi Hospital. Iran. J. Child. Neurol 2012;6(2):39-44.



Status epilepticus (SE) is the most common pediatric neurologic emergency with high mortality and morbidity. There is no consensus on the drug of choice in the treatment of children. The purpose of this study was to evaluate the clinical efficacy and safety of intravenous sodium valproate as a third-line drug in the treatment of generalized convulsive SE of children.

Materials & Methods

In a retrospective study, medical records of those children who were admitted to Shahid Sadoughi Hospital of Yazd due to refractory generalized convulsive SE and were treated by intravenous sodium valproate as a third-line drug from 2009 to 2011 were evaluated.


Six girls and five boys with a mean age of 5.12 ± 1.2 years (range: 3 - 9.6 years) were evaluated.

Intravenous valproate was effective for cessation of seizures in seven patients (63.6 %). The mean dose of valproate for stopping seizures was 27.1 ± 1.4 mg/kg/day.

Children whose seizures were controlled by sodium valproate were older than non- responsive children (mean± SD: 4.8 ± 1.2 years vs. 3.1 ± 0.43 years, p= 0.03) and they also had shorter ICU stay days (mean± SD: 2.6 ± 1.4 days vs. 5.6 ± 2.8 days, p= 0.01).

Two children had mild and transient nausea and vomiting. None of them had cardiopulmonary or severe paraclinical side effects.


Intravenous sodium valproate may be used as an effective and safe third-line antiepileptic drug in the treatment of pediatric generalized convulsive status epilepticus.


  1. Raj D, Gulati S, Lodha R. Status epilepticus. Indian J Pediatr 2011;78(2):219-26.
  2. Shearer P, Riviello J. Generalized convulsive status epilepticus in adults and children: treatment guidelines and protocols. Emerg Med Clin North Am 2011;29(1):51-64.
  3. Mikati MA. Status epilepticus. In: Kliegman RM, Stanton BF, Schor NF, St. Geme JW, Behrman RE. Nelson textbook of pediatrics. 19th ed. Philadelphia: Saunders; 2011. P. 2013-7.
  4. Nair PP, Kalita J, Misra UK. Status epilepticus: Why, what, and how. J Postgrad Med 2011;57(3):242-52.
  5. Saz EU, Karapinar B, Ozcetin M, Polat M, Tosun A, Serdaroglu G et al. Convulsive status epilepticus in children: etiology, treatment protocol and outcome. Seizure 2011;20(2):115-8.
  6. Nam SH, Lee BL, Lee CG, Yu HJ, Joo EY, Lee J et al. The role of ketogenic diet in the treatment of refractory status epilepticus. Epilepsia 2011;52(11):e181-4.
  7. Shiloh-Malawsky Y, Fan Z, Greenwood R, Tennison M. Successful treatment of childhood prolonged refractory status epilepticus with lacosamide. Seizure 2011;20(7):586-8.
  8. Abend NS, Monk HM, Licht DJ, Dlugos DJ. Intravenous levetiracetam in critically ill children with status epilepticus or acute repetitive seizures. Pediatr Crit Care Med 2009;10(4):505-10.
  9. Chang YC, Lin JJ, Wang HS, Chou ML, Hung PC, Hsieh MY. Intravenous valproate for seizures in 137 Taiwanese children - valproate naive and non-naive. Acta Neurol Taiwan 2010;19(2):100-6.
  10. Wheless JW, Vazquez BR, Kanner AM, Ramsay RE, Morton L, Pellock JM. Rapid infusion with valproate sodium is well tolerated in patients with epilepsy. Neurology 2004;63(8):1507-8.
  11. Sofou K, Kristjánsdóttir R, Papachatzakis NE, Ahmadzadeh A, Uvebrant P. Management of prolonged seizures and status epilepticus in childhood: a systematic review. J Child Neurol 2009;24(8):918-26.
  12. Visudtibhan A, Bhudhisawadi K, Vaewpanich J, Chulavatnatol S, Kaojareon S. Pharmacokinetics and clinical application of intravenous valproate in Thai epileptic children. Brain Dev 2011;33(3):189-94.
  13. Kälviäinen R, Eriksson K, Parviainen I. Refractory generalised convulsive status epilepticus: a guide to treatment. CNS Drugs 2005;19(9):759-68.
  14. Arif H, Hirsch LJ. Treatment of status epilepticus. Semin Neurol 2008;28(3):342-54.
  15. Misra UK, Kalita J, Patel R. Sodium valproate vs phenytoin in status epilepticus: A pilot study. Neurology 2006;67(2):340-2.
  16. Kwan SY. The role of intravenous valproate in convulsive status epilepticus in the future. Acta Neurol Taiwan 2010;19(2):78-81.
  17. Aldenkamp A, Vigevano F, Arzimanoglou A, Covanis A. Role of valproate across the ages. Treatment of epilepsy in children. Acta Neurol Scand Suppl 2006;184:1-13.
  18. Limdi NA, Shimpi AV, Faught E, Gomez CR, Burneo JG. Efficacy of rapid IV dministration of valproic acid for status epilepticus. Neurology 2005;64(2);353-535.
  19. Morton LD, O’Hara KA, Coots BP, Pellock JM. Safety of rapid intravenous valproate infusion in pediatric patients. Pediatr Neurol 2007;36(2):81-83.
  20. Yu KT, Mills S, Thompson N, Cunanan C. Safety and efficacy of intravenous valproate in pediatric status epilepticus and acute repetitive seizures. Epilepsia 2003;44(5):724-6.
  21. Trinka E. The use of valproate and new antiepileptic drugs in status epilepticus. Epilepsia 2007;48 Suppl 8:49-51.
  22. Chen L, Feng P, Wang J, Liu L, Zhou D. Intravenous sodium valproate in mainland China for the treatment of diazepam refractory convulsive status epilepticus. J Clin Neurosci 2009;16(4):524-6.
  23. Mehta V, Singhi P, Singhi S. Intravenous sodium valproate versus diazepam infusion for the control of refractory status epilepticus in children: a randomized controlled trial. J Child Neurol 2007;22(10):1191-7.
  24. Jha S, Jose M, Patel R. Intravenous sodium valproate in status epilepticus. Neurol India 2003;51(3):421-2.
  25. Kanner AM. Intravenous valproate for status epilepticus. An effective, yet still merely empirical alternative! Epilepsy Curr 2008;8(3):66-7.
  26. Russell S. Carnitine as an antidote for acute valproate toxicity in children. Curr Opin Pediatr 2007;19(2):206- 10.
  27. Gilad R, Gilad R, Izkovitz N, Dabby R, Rapoport A, Sadeh M, et al. Treatment of status epilepticus and acute repetitive seizures with i.v. valproic acid vs. phenytoin. Acta Neurol Scand 2008;118(5):296-300.

Case Report

Seizure is a rare presentation for acute hemolysis due to G6PD deficiency.

We report a previously healthy boy who presented initially with seizure and cyanosis and subsequently acute hemolysis, due to glucose-6-phosphate dehydrogenase deficiency (G6PD) and probably secondary methemoglobinemia, following the ingestion of fava beans.

A Novel Mutation of GDAP1 Associated with Charcot-Marie-Tooth Disease in An Iranian Family


Iranian Journal of Child Neurology, Vol. 6 No. 2 (2012), 30 April 2012, Page 49-54

As a result of higher distributed consanguinity in the Mediterranean region and the Middle East, autosomal-recessive forms of Charcot-Marie-Tooth (ARCMT) are more common in these areas. CMT disease caused by mutations in the ganglioside-induced differentiation-associated protein 1 (GDAP1) gene is a severe autosomal recessive neuropathy resulting in either demyelinating CMT4A neuropathy or axonal neuropathy with vocal cord paresis. The patient was an 8-year-old boy with AR inheritance that showed some delayed achievement of motor milestones, including walking, also bilateral foot drop, wasting of distal muscles in the legs, pes cavus and marked weakness of the foot dorsiflexors. He had no hoarseness or vocal cord paralysis. Total genomic DNA was extracted from whole peripheral blood of the patient and his family by using standard procedures. PCR- sequencing method were used to analysis the whole coding regions of the GDAP1 gene. A novel homozygote insertion of T nucleotide in codon 34 was detected (c.100_101insT) that probably led to an early stop codon. This mutation may be associated with a common haplotype, suggesting a common ancestor that needs further investigation in the Iranian population.