• Register
  • Login

Iranian Journal of Child Neurology

  • Current
  • Archives
  • Announcements
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
Advanced Search
  1. Home
  2. Archives
  3. Vol. 16 No. 4 (2022): Autumn
  4. Research Article

ISSN: 1735-4668

Autumn
Vol. 16 No. 4 (2022)

Molecular evaluation of Ex3 VNTR polymorphism of the DRD4 gene in patients with autism spectrum disorder

  • Shahrokh Amiri
  • Mahmoud Shekari Khaniani
  • Arman Mohammadi
  • Mahan Asadian
  • Leila Mehdizadeh Fanid
  • Ali Reza Shafiee-Kandjani

Iranian Journal of Child Neurology, Vol. 16 No. 4 (2022), , Page 23-31
https://doi.org/10.22037/ijcn.v16i4.34289 Published 23 October 2022

  • View Article
  • Download
  • Cite
  • References
  • Statastics
  • Share

Abstract

Abstract


Objective


Autism Spectrum Disorders (ASDs) are a group of neurodevelopmental disorders that affect social and communication skills. They are characterized by severe communication and social skills disabilities and limited and repetitive activities and their prevalence appear to be steadily increasing. Genes involved in the dopamine pathway may play an important role in the development of autism and this study we evaluated the possible association between Ex3 VNTR polymorphism of the DRD4 gene and autism spectrum disorder in the Iranian population.


Materials & Methods


In this case-control study,97 children with autism and 103 healthy individuals were selected from the northwestern area of Iran as the case group and the control group, respectively. After genomic extraction from peripheral blood samples by the proteinase K method, the polymerase chain reaction (PCR) technique was used to determine the genotypes of polymorphism. The data then were coded and analyzed using SPSS22 software.


Result


The results of the study showed that the allele frequencies were different in the two groups and some of these differences were statistically significant. The most common allele in both the ASD and the control group was the 700 bp allele and its frequency was significantly different in the two groups, being more common in the ASD group. (p-value=0.0018). The other allele with a statistically different frequency was the 800 bp allele which was less frequent in the ASD group (p-value=0.0017).


Conclusion


These results suggest a potential association between Ex3 VNTR polymorphism of the DRD4 gene and autism spectrum disorder in the Iranian population and necessitate further studies evaluating the DRD4 gene.

Keywords:
  • Autism Spectrum Disorder; EX 3 VNTR Polymorphism; DRD4 Gene
  • pdf

How to Cite

Amiri, S., Shekari Khaniani, M., Mohammadi, A., Asadian, M., Mehdizadeh Fanid, L., & Shafiee-Kandjani, A. R. (2022). Molecular evaluation of Ex3 VNTR polymorphism of the DRD4 gene in patients with autism spectrum disorder. Iranian Journal of Child Neurology, 16(4), 23-31. https://doi.org/10.22037/ijcn.v16i4.34289
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

References

1. Kanner L. Autistic disturbances of affective contact. Acta Paedopsychiatr. 1968;35(4):100-36. [PubMed:4880460].
2. H. A. Die „Autistischen psychopathen” im kindesalter. Archiv für psychiatrie und nervenkrankheiten. 1994:76-136.
3. Elsabbagh M, Divan G, Koh YJ, Kim YS, Kauchali S, Marcín C, et al. Global prevalence of autism and other pervasive developmental disorders. Autism research. 2012;5(3):160-79.
4. Hallmayer J, Cleveland S, Torres A, Phillips J, Cohen B, Torigoe T, et al. Genetic heritability and shared environmental factors among twin pairs with autism. Archives of general psychiatry. 2011;68(11):1095-102.
5. Devlin B, Scherer SW. Genetic architecture in autism spectrum disorder. Current Opinion in Genetics & Development. 2012;22(3):229-37. doi:https://doi.org/10.1016/j.gde.2012.03.002.
6. Stevens M, Washington A, Rice C, Jenner W, Ottolino J, Clancy K, et al. Prevalence of the autism spectrum disorders (ASDs) in multiple areas of the United States, 2000 and 2002. Atlanta, GA: Centers for Disease Control and Prevention. 2007.
7. Kogan MD, Blumberg SJ, Schieve LA, Boyle CA, Perrin JM, Ghandour RM, et al. Prevalence of parent-reported diagnosis of autism spectrum disorder among children in the US, 2007. Pediatrics. 2009;124(5):1395-403.
8. Folstein SE, Rosen-Sheidley B. Genetics of austim: complex aetiology for a heterogeneous disorder. Nature Reviews Genetics. 2001;2(12):943-55.
9. Williams E, Casanova M. Above genetics: lessons from cerebral development in autism. Translational neuroscience. 2011;2(2):106-20.
10. Schaid DJ, Rowland CM, Tines DE, Jacobson RM, Poland GA. Score tests for association between traits and haplotypes when linkage phase is ambiguous. The American Journal of Human Genetics. 2002;70(2):425-34.
11. Acosta MT, Pearl PL. The neurobiology of autism: new pieces of the puzzle. Current neurology and neuroscience reports. 2003;3(2):149-56.
12. Ptácek R, Kuzelová H, Stefano GB. Dopamine D4 receptor gene DRD4 and its association with psychiatric disorders. Medical science monitor : international medical journal of experimental and clinical research. 2011;17(9):RA215-RA20. doi:10.12659/msm.881925. [PubMed:21873960].
13. Van Tol HH, Wu CM, Guan HC, Ohara K, Bunzow JR, Civelli O, et al. Multiple dopamine D4 receptor variants in the human population. Nature. 1992;358(6382):149-52. doi:10.1038/358149a0. [PubMed:1319557].
14. Nikolaidis A, Gray JR. ADHD and the DRD4 exon III 7-repeat polymorphism: an international meta-analysis. Social Cognitive and Affective Neuroscience. 2009;5(2-3):188-93. doi:10.1093/scan/nsp049.
15. Eisenegger C, Knoch D, Ebstein RP, Gianotti LRR, Sándor PS, Fehr E. Dopamine Receptor D4 Polymorphism Predicts the Effect of L-DOPA on Gambling Behavior. Biological Psychiatry. 2010;67(8):702-6. doi:https://doi.org/10.1016/j.biopsych.2009.09.021.
16. Gorwood P, Le Strat Y, Ramoz N, Dubertret C, Moalic J-M, Simonneau M. Genetics of dopamine receptors and drug addiction. Human genetics. 2012;131(6):803-22.
17. Franke P, Wang T, Möthen MM, Knapp M, Neith H, Lichtermann D, et al. Susceptibility for alcoholism: DRD4 exon III polymorphism: a case–control and a family-based association approach. Addiction Biology. 2000;5(3):289-95. doi:https://doi.org/10.1111/j.1369-1600.2000.tb00193.x.
18. Levitan RD, Kaplan AS, Davis C, Lam RW, Kennedy JL. A Season-of-Birth/DRD4 Interaction Predicts Maximal Body Mass Index in Women with Bulimia Nervosa. Neuropsychopharmacology. 2010;35(8):1729-33. doi:10.1038/npp.2010.38.
19. Xu F-l, Wu X, Zhang J-j, Wang B-j, Yao J. A meta-analysis of data associating DRD4 gene polymorphisms with schizophrenia. Neuropsychiatric disease and treatment. 2018;14:153.
20. Reiersen AM, Todorov AA. Association between DRD4 genotype and Autistic Symptoms in DSM-IV ADHD. Journal of the Canadian Academy of Child and Adolescent Psychiatry = Journal de l'Academie canadienne de psychiatrie de l'enfant et de l'adolescent. 2011;20(1):15-21. [PubMed:21286365].
21. Calahorro F, Alejandre E, Anaya N, Guijarro T, Sanz Y, Romero A, et al. A preliminary study of gene polymorphisms involved in the neurotransmitters metabolism of a homogeneous Spanish autistic group. Research in Autism Spectrum Disorders. 2009;3(2):438-43. doi:https://doi.org/10.1016/j.rasd.2008.09.003.
22. Grady D, Harxhi A, Smith M, Flodman P, Spence M, Swanson J, et al. Sequence variants of the DRD4 gene in autism: further evidence that rare DRD4 7R haplotypes are ADHD specific. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics. 2005;136(1):33-5.
23. Girgis S, Nasrallah IM, Suh JR, Oppenheim E, Zanetti KA, Mastri MG, et al. Molecular cloning, characterization and alternative splicing of the human cytoplasmic serine hydroxymethyltransferase gene. Gene. 1998;210(2):315-24.
24. Brookes K-J, Xu X, Chen C-K, Huang Y-S, Wu Y-Y, Asherson P. No evidence for the association of DRD4 with ADHD in a Taiwanese population within-family study. BMC Medical Genetics. 2005;6(1):31. doi:10.1186/1471-2350-6-31.
25. Qian Q, Wang Y, Zhou R, Yang L, Faraone SV. Family‐based and case‐control association studies of DRD4 and DAT1 polymorphisms in Chinese attention deficit hyperactivity disorder patients suggest long repeats contribute to genetic risk for the disorder. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics. 2004;128(1):84-9.
26. Leung PWL, Lee CC, Hung SF, Ho TP, Tang CP, Kwong SL, et al. Dopamine receptor D4 (DRD4) gene in Han Chinese children with attention-deficit/hyperactivity disorder (ADHD): Increased prevalence of the 2-repeat allele. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics. 2005;133B(1):54-6. doi:https://doi.org/10.1002/ajmg.b.30129.
27. Curran S, Mill J, Sham P, Rijsdijk F, Marusic K, Taylor E, et al. QTL association analysis of the DRD4 exon 3 VNTR polymorphism in a population sample of children screened with a parent rating scale for ADHD symptoms. Am J Med Genet. 2001;105(4):387-93. doi:10.1002/ajmg.1366. [PubMed:11378855].
28. Tabatabaei SM, Amiri S, Faghfouri S, Noorazar SG, AbdollahiFakhim S, Fakhari A. DRD4 Gene Polymorphisms as a Risk Factor for Children with Attention Deficit Hyperactivity Disorder in Iranian Population. Int Sch Res Notices. 2017;2017:2494537. doi:10.1155/2017/2494537. [PubMed:28630890].
  • Abstract Viewed: 187 times
  • pdf Downloaded: 0 times

Download Statastics

  • Linkedin
  • Twitter
  • Facebook
  • Google Plus
  • Telegram

Information
  • For Readers
  • For Authors
  • For Librarians

Open Journal Systems
Keywords
  • Home
  • Archives
  • Submissions
  • About the Journal
  • Editorial Team
  • Contact
The template of this website is designed by Sinaweb