A gene selection approach for Diabetic retinopathy microarray data classification using Ant Colony Optimization
Journal of Ophthalmic and Optometric Sciences,
Vol. 3 No. 4 (2019),
5 October 2019
,
Page 1-10
https://doi.org/10.22037/joos.v3i4.37115
Abstract
This paper proposes an approach for gene selection in microarray data. The proposed approach consists of a primary filter approach using adjusted p-value apply to the result of the differently expressed genes analyses which reduces the initial genes and hence the search space and time complexity. Then, a heuristic approach which is based on ant colony optimization method (ACO) is used to find the set of genes which improve the classification accuracy. The selected genes from the last phase are evaluated using (receiver operating characteristic) ROC curve and the most effective while smallest feature subset is determined. The classifier which are evaluated in the proposed framework is K-nearest neighbor. The proposed approach is evaluated on a diabetic retinopathy microarray dataset. The experiment shows that with 9 highly informative genes, the proposed approach has achieved a high precision rate. In addition, the six selected genes have been found meaningfully in the biology texts in comparison with the state-of-the-art. The evaluations confirm that the proposed approach can find the smallest subset of genes while approaching the maximum accuracy.
- Diabetic Retinopathy, Gene selection, Microarray data, Ant colony optimization, K-nearest neighbor classification
How to Cite
References
2. https://www.cdc.gov/features/diabetic-retinopathy/index.html.
3. Group, D.E.R., et al., Frequency of Evidence-Based Screening for Retinopathy in Type 1 Diabetes. N Engl J Med, 2017. 376(16): p. 1507-1516.
4. Arar, N.H., et al., Heritability of the severity of diabetic retinopathy: the FIND-Eye study. Invest Ophthalmol Vis Sci, 2008. 49(9): p. 3839-45.
5. Hietala, K., et al., Heritability of proliferative diabetic retinopathy. Diabetes, 2008. 57(8): p. 2176-80.
6. Fritsche, L.G., et al., Age-related macular degeneration: genetics and biology coming together. Annu Rev Genomics Hum Genet, 2014. 15: p. 151-71.
7. Fritsche, L.G., et al., A large genome-wide association study of age-related macular degeneration highlights contributions of rare and common variants. Nat Genet, 2016. 48(2): p. 134-43.
8. Skol et al. Mendelian randomization identifies folliculin expression as a mediator of diabetic retinopathy,2020, bioRxiv, 10.1101/2020.06.09.143164
9. M. Dorigo and L. M. Gambardella, "Ant colony system: a cooperative learning approach to the traveling salesman problem," in IEEE Transactions on Evolutionary Computation, vol. 1, no. 1, pp. 53-66, April 1997, doi: 10.1109/4235.585892.
10. Sharbaf, Fatemeh Vafaee, Sara Mosafer, and Mohammad Hossein Moattar. "A hybrid gene selection approach for microarray data classification using cellular learning automata and ant colony optimization." Genomics 107.6 (2016): 231-238.
11. Fix, Evelyn, and Joseph Lawson Hodges. "Discriminatory analysis. Nonparametric discrimination: Consistency properties." International Statistical Review/Revue Internationale de Statistique 57.3 (1989): 238-247.
12. Clough E., Barrett T. (2016) The Gene Expression Omnibus Database. In: Mathé E., Davis S. (eds) Statistical Genomics. Methods in Molecular Biology, vol 1418. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3578-9_5
13. https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE146615
14. B.M. Bolstad, R.A Irizarry, M. Åstrand, T.P. Speed, A comparison of normalization methods for high density oligonucleotide array data based on variance and bias, Bioinformatics, Volume 19, Issue 2, 22 January 2003, Pages 185–193, https://doi.org/10.1093/bioinformatics/19.2.185
15. Jafari M, Ansari-Pour N. Why, When and How to Adjust Your P Values?. Cell J. 2019;20(4):604-607. doi:10.22074/cellj.2019.5992
16. Chen EY, Tan CM, Kou Y, Duan Q, Wang Z, Meirelles GV, Clark NR, Ma'ayan A.
Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics. 2013; 128(14).
17. Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, Koplev S, Jenkins SL, Jagodnik KM, Lachmann A, McDermott MG, Monteiro CD, Gundersen GW, Ma'ayan A.
Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Research. 2016; gkw377 .
18. Xie Z, Bailey A, Kuleshov MV, Clarke DJB., Evangelista JE, Jenkins SL, Lachmann A, Wojciechowicz ML, Kropiwnicki E, Jagodnik KM, Jeon M, & Ma’ayan A.
Gene set knowledge discovery with Enrichr. Current Protocols, 1, e90. 2021. doi: 10.1002/cpz1.90
19. Maghsoudloo, Mazaher, et al. "An efficient hybrid feature selection method to identify potential biomarkers in common chronic lung inflammatory diseases." Genomics 112.5 (2020): 3284-3293.
20. Becker, R.A., Chambers, J. M. and Wilks, A. R., The New S Language. Wadsworth & Brooks/Cole, 1988.
21. Ritchie, M.E., et al., limma powers differential expression analyses for RNA sequencing and microarray studies. Nucleic Acids Res, 2015. 43(7): p. e47.
22. Aghdam SY, Sheibani N. The ubiquitin-proteasome system and microvascular complications of diabetes. J Ophthalmic Vis Res. 2013;8(3):244-256.
23. Wang, J., Fresquez, T., Kandachar, V., Deretic, D. (2017). The Arf GEF GBF1 and Arf4 synergize with the sensory receptor cargo, rhodopsin, to regulate ciliary membrane trafficking. J. Cell Sci. 130 (23), 3975–3987. doi: 10.1242/jcs.205492
24. Lu, CS., Lee, YN., Wang, SW. et al. KC21 Peptide Inhibits Angiogenesis and Attenuates Hypoxia-Induced Retinopathy. J. of Cardiovasc. Trans. Res. 12, 366–377 (2019). https://doi.org/10.1007/s12265-019-09865-6
25. NATALIE R. VAN ZUYDAM, ELEANOR HOTHERSALL, COLIN N. PALMER, HELEN M. COLHOUN, Oxford, United Kingdom, Dundee, United Kingdom
26. Xiuli Zhang, Tingwen Guan, Boxuan Yang, Zhihong Chi, Qijun Wan, Harvest F. Gu, SLC30A7 has anti-oxidant stress effects in high glucose-induced apoptosis via the NFE2L2/HMOX1 signal transduction pathway, Diabetes Research and Clinical Practice, Volume 172, 2021, 108445, ISSN 0168-8227, https://doi.org/10.1016/j.diabres.2020.108445
27. PAUL M. TITCHENELL, QINGWEI CHU, BOBBY MONKS, MORRIS J. BIRNBAUM, Philadelphia, PA
28. Fishilevich S, Nudel R, Rappaport N, Hadar R, Plaschkes I, Iny Stein T, Rosen N, Kohn A, Twik M, Safran M, Lancet D, and Cohen D. GeneHancer: genome - wide integration of enhancers and target genes in GeneCards , Database(Oxford)(2017), doi: 10.1093 / database / bax028.
- Abstract Viewed: 120 times
- pdf Downloaded: 107 times