Novel Potential Drugs for Therapy of Age-Related Macular Degeneration Using Protein-Protein Interaction Network (PPI) Analysis
Journal of Ophthalmic and Optometric Sciences,
Vol. 3 No. 4 (2019),
5 October 2019
,
Page 11-23
https://doi.org/10.22037/joos.v3i4.36535
Abstract
Background: Age-related macular degeneration (AMD) is a common cause of blindness in older people. If diagnosed early, its progression in humans can be prevented.
Material and Methods: To understand of AMD pathogenesis, this study was carried out to investigate differential gene expression in AMD and normal samples. Here, Differentially Expressed Genes (DEGs) with p-value of less than 0.01 were selected to construct the Protein- Protein interaction Network (PPI) using STRING web tool and visualized by Cytoscape software. Next, four PPI modules were discovered from the network. Then, the GO and pathway enrichment analyses were carried out on the modules’ genes. Drug- gene interactions were obtained for modules’ genes and reconstructed as a single drug- gene network.
Results: Bevacisumab, Degzamethazone and Pegaptanib, as the most potent therapeutic candidate
drugs and previously mentioned as a therapy for AMD, had interaction with the genes associated with AMD. The other candidate drugs are Docetaxel, Cisplutin, Carboplatin, Methotrexate, Bexarotene, Raloxifene Hydrochloride, Acitretine, Adapalene, and Doxorubicine, some of which were previously discovered to be efficient against cancer. They had two gene targets in different modules.
Conclusion: Computational tools are efficient for therapeutic goals, experimental validation of findings as well as testing of drug toxicity are critical for better treatment. Drugs proposed in this study might promote future studies on AMD.
Keywords: Age-Related Macular Degeneration; Differential Gene Expression; Drug- Gene Network;
Protein-Protein Interaction.
- Age-related macular degeneration
- Differential gene expression
- Drug- gene network
- Protein-protein interaction
How to Cite
References
Fleckenstein M, Keenan TDL, Guymer RH, Chakravarthy U, Schmitz-Valckenberg S, Klaver CC, et al. Age-related macular degeneration. Nature Reviews Disease Primers. 2021;7(1):31. doi: 10.1038/s41572-021-00265-2.
Smith W, Assink J, Klein R, Mitchell P, Klaver CC, Klein BE, et al. Risk factors for age-related macular degeneration: Pooled findings from three continents. Ophthalmology. 2001;108(4):697-704. Epub 2001/04/12. doi: 10.1016/s0161-6420(00)00580-7. PubMed PMID: 11297486.
Al-Zamil WM, Yassin SA. Recent developments in age-related macular degeneration: a review. Clin Interv Aging. 2017;12:1313-30. doi: 10.2147/CIA.S143508. PubMed PMID: 28860733.
Ambati J, Ambati BK, Yoo SH, Ianchulev S, Adamis AP. Age-related macular degeneration: etiology, pathogenesis, and therapeutic strategies. Surv Ophthalmol. 2003;48(3):257-93. Epub 2003/05/15. doi: 10.1016/s0039-6257(03)00030-4. PubMed PMID: 12745003.
Owen CG, Jarrar Z, Wormald R, Cook DG, Fletcher AE, Rudnicka AR. The estimated prevalence and incidence of late stage age related macular degeneration in the UK. Br J Ophthalmol. 2012;96(5):752-6. Epub 2012/02/15. doi: 10.1136/bjophthalmol-2011-301109. PubMed PMID: 22329913; PubMed Central PMCID: PMC3329633.
Maller J, George S, Purcell S, Fagerness J, Altshuler D, Daly MJ, et al. Common variation in three genes, including a noncoding variant in CFH, strongly influences risk of age-related macular degeneration. Nat Genet. 2006;38(9):1055-9. Epub 2006/08/29. doi: 10.1038/ng1873. PubMed PMID: 16936732.
Ambati J, Fowler BJ. Mechanisms of age-related macular degeneration. Neuron. 2012;75(1):26-39. Epub 2012/07/17. doi: 10.1016/j.neuron.2012.06.018. PubMed PMID: 22794258; PubMed Central PMCID: PMC3404137.
Newman AM, Gallo NB, Hancox LS, Miller NJ, Radeke CM, Maloney MA, et al. Systems-level analysis of age-related macular degeneration reveals global biomarkers and phenotype-specific functional networks. Genome Med. 2012;4(2):16. Epub 2012/03/01. doi: 10.1186/gm315. PubMed PMID: 22364233; PubMed Central PMCID: PMC3372225.
Villegas VM, Aranguren LA, Kovach JL, Schwartz SG, Flynn HW, Jr. Current advances in the treatment of neovascular age-related macular degeneration. Expert Opin Drug Deliv. 2017;14(2):273-82. Epub 2016/07/20. doi: 10.1080/17425247.2016.1213240. PubMed PMID: 27434329.
Mousavian Z, Díaz J, Masoudi-Nejad A. Information theory in systems biology. Part II: protein-protein interaction and signaling networks. Seminars in cell & developmental biology. 2016;51:14-23. doi: 10.1016/J.SEMCDB.2015.12.006.
Mousavian Z, Kavousi K, Masoudi-Nejad A. Information theory in systems biology. Part I: Gene regulatory and metabolic networks. Seminars in Cell and Developmental Biology. 2016;51:3-13. doi: 10.1016/j.semcdb.2015.12.007.
Aflakparast M, Salimi H, Gerami A, Dubé MP, Visweswaran S, Masoudi-Nejad A. Cuckoo search epistasis: a new method for exploring significant genetic interactions. Heredity 2014 112:6. 2014;112(6):666-74. doi: 10.1038/hdy.2014.4.
Masoudi-Sobhanzadeh Y, Omidi Y, Amanlou M, Masoudi-Nejad A. Drug databases and their contributions to drug repurposing. Genomics. 2020;112(2):1087-95. doi: 10.1016/J.YGENO.2019.06.021.
H L, S N, S H, M T-A, F K, M M-J, et al. High-throughput analysis of the interactions between viral proteins and host cell RNAs. Computers in biology and medicine. 2021;135:104611-. doi: 10.1016/J.COMPBIOMED.2021.104611.
Torkamanian-Afshar M, Lanjanian H, Nematzadeh S, Tabarzad M, Najafi A, Kiani F, et al. RPINBASE: An online toolbox to extract features for predicting RNA-protein interactions. Genomics. 2020;112(3). doi: 10.1016/j.ygeno.2020.02.013.
Ahmadi H, Ahmadi A, Azimzadeh-Jamalkandi S, Shoorehdeli MA, Salehzadeh-Yazdi A, Bidkhori G, et al. HomoTarget: A new algorithm for prediction of microRNA targets in Homo sapiens. Genomics. 2013;101(2):94-100. doi: 10.1016/J.YGENO.2012.11.005.
Masoudi-Sobhanzadeh Y, Omidi Y, Amanlou M, Masoudi-Nejad A. Trader as a new optimization algorithm predicts drug-target interactions efficiently. Scientific Reports 2019 9:1. 2019;9(1):1-14. doi: 10.1038/s41598-019-45814-8.
Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M. The KEGG resource for deciphering the genome. Nucleic Acids Res. 2004;32(Database issue):D277-80. Epub 2003/12/19. doi: 10.1093/nar/gkh063. PubMed PMID: 14681412; PubMed Central PMCID: PMC308797.
Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature Protocols. 2009;4(1):44-57. doi: 10.1038/nprot.2008.211.
Li M, Wang J, Chen J, editors. A Fast Agglomerate Algorithm for Mining Functional Modules in Protein Interaction Networks. 2008 International Conference on BioMedical Engineering and Informatics; 2008 27-30 May 2008.
Huang da W, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009;37(1):1-13. Epub 2008/11/27. doi: 10.1093/nar/gkn923. PubMed PMID: 19033363; PubMed Central PMCID: PMC2615629.
Hou XW, Wang Y, Pan CW. Metabolomics in Age-Related Macular Degeneration: A Systematic Review. Invest Ophthalmol Vis Sci. 2020;61(14):13. Epub 2020/12/15. doi: 10.1167/iovs.61.14.13. PubMed PMID: 33315052; PubMed Central PMCID: PMC7735950.
McCarty CA, Mukesh BN, Fu CL, Mitchell P, Wang JJ, Taylor HR. Risk factors for age-related maculopathy: the Visual Impairment Project. Arch Ophthalmol. 2001;119(10):1455-62. Epub 2001/10/23. doi: 10.1001/archopht.119.10.1455. PubMed PMID: 11594944.
Datta S, Cano M, Ebrahimi K, Wang L, Handa JT. The impact of oxidative stress and inflammation on RPE degeneration in non-neovascular AMD. Prog Retin Eye Res. 2017;60:201-18. Epub 2017/03/25. doi: 10.1016/j.preteyeres.2017.03.002. PubMed PMID: 28336424; PubMed Central PMCID: PMC5600827.
Szabados L, Savouré A. Proline: a multifunctional amino acid. Trends Plant Sci. 2010;15(2):89-97. Epub 2009/12/29. doi: 10.1016/j.tplants.2009.11.009. PubMed PMID: 20036181.
Yam M, Engel AL, Wang Y, Zhu S, Hauer A, Zhang R, et al. Proline mediates metabolic communication between retinal pigment epithelial cells and the retina. J Biol Chem. 2019;294(26):10278-89. Epub 2019/05/19. doi: 10.1074/jbc.RA119.007983. PubMed PMID: 31110046.
Singh SS, Jois SD. Chapter One - Homo- and Heterodimerization of Proteins in Cell Signaling: Inhibition and Drug Design. In: Donev R, editor. Advances in Protein Chemistry and Structural Biology. 111: Academic Press; 2018. p. 1-59.
Nitsch D, Douglas I, Smeeth L, Fletcher A. Age-related macular degeneration and complement activation-related diseases: a population-based case-control study. Ophthalmology. 2008;115(11):1904-10. Epub 2008/09/20. doi: 10.1016/j.ophtha.2008.06.035. PubMed PMID: 18801575.
Emerson MV, Lauer AK, Flaxel CJ, Wilson DJ, Francis PJ, Stout JT, et al. Intravitreal bevacizumab (Avastin) treatment of neovascular age-related macular degeneration. Retina. 2007;27(4):439-44. Epub 2007/04/11. doi: 10.1097/IAE.0b013e31804b3e15. PubMed PMID: 17420695.
Hurwitz H, Fehrenbacher L, Novotny W, Cartwright T, Hainsworth J, Heim W, et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med. 2004;350(23):2335-42. Epub 2004/06/04. doi: 10.1056/NEJMoa032691. PubMed PMID: 15175435.
Avery RL, Pieramici DJ, Rabena MD, Castellarin AA, Nasir MA, Giust MJ. Intravitreal bevacizumab (Avastin) for neovascular age-related macular degeneration. Ophthalmology. 2006;113(3):363-72.e5. Epub 2006/02/07. doi: 10.1016/j.ophtha.2005.11.019. PubMed PMID: 16458968.
Bom Aggio F, Eid Farah M, Melo GB. Intravitreal bevacizumab for occult choroidal neovascularization with pigment epithelium detachment in age-related macular degeneration. Acta Ophthalmol Scand. 2006;84(5):713-4. Epub 2006/09/13. doi: 10.1111/j.1600-0420.2006.00759.x. PubMed PMID: 16965511.
Ishikawa K, Kannan R, Hinton DR. Molecular mechanisms of subretinal fibrosis in age-related macular degeneration. Experimental eye research. 2016;142:19-25.
Piippo N, Korhonen E, Hytti M, Skottman H, Kinnunen K, Josifovska N, et al. Hsp90 inhibition as a means to inhibit activation of the NLRP3 inflammasome. Sci Rep. 2018;8(1):6720. Epub 2018/05/02. doi: 10.1038/s41598-018-25123-2. PubMed PMID: 29712950; PubMed Central PMCID: PMC5928092.
Decanini A, Nordgaard CL, Feng X, Ferrington DA, Olsen TW. Changes in select redox proteins of the retinal pigment epithelium in age-related macular degeneration. Am J Ophthalmol. 2007;143(4):607-15. Epub 2007/02/07. doi: 10.1016/j.ajo.2006.12.006. PubMed PMID: 17280640; PubMed Central PMCID: PMC2365890.
Hytti M, Korhonen E, Hongisto H, Kaarniranta K, Skottman H, Kauppinen A. Differential Expression of Inflammasome-Related Genes in Induced Pluripotent Stem-Cell-Derived Retinal Pigment Epithelial Cells with or without History of Age-Related Macular Degeneration. Int J Mol Sci. 2021;22(13):6800. doi: 10.3390/ijms22136800. PubMed PMID: 34202702.
Haller JA, Bandello F, Belfort R, Jr., Blumenkranz MS, Gillies M, Heier J, et al. Dexamethasone intravitreal implant in patients with macular edema related to branch or central retinal vein occlusion twelve-month study results. Ophthalmology. 2011;118(12):2453-60. Epub 2011/07/19. doi: 10.1016/j.ophtha.2011.05.014. PubMed PMID: 21764136.
Boyer DS, Yoon YH, Belfort R, Jr., Bandello F, Maturi RK, Augustin AJ, et al. Three-year, randomized, sham-controlled trial of dexamethasone intravitreal implant in patients with diabetic macular edema. Ophthalmology. 2014;121(10):1904-14. Epub 2014/06/08. doi: 10.1016/j.ophtha.2014.04.024. PubMed PMID: 24907062.
Giancipoli E, Pinna A, Boscia F, Zasa G, Sotgiu G, Dore S, et al. Intravitreal Dexamethasone in Patients with Wet Age-Related Macular Degeneration Resistant to Anti-VEGF: A Prospective Pilot Study. J Ophthalmol. 2018;2018:5612342-. doi: 10.1155/2018/5612342. PubMed PMID: 30151278.
Zhou B, Wang B. Pegaptanib for the treatment of age-related macular degeneration. Exp Eye Res. 2006;83(3):615-9. Epub 2006/05/09. doi: 10.1016/j.exer.2006.02.010. PubMed PMID: 16678158.
Iwase T, Fu J, Yoshida T, Muramatsu D, Miki A, Hashida N, et al. Sustained delivery of a HIF-1 antagonist for ocular neovascularization. J Control Release. 2013;172(3):625-33. Epub 2013/10/16. doi: 10.1016/j.jconrel.2013.10.008. PubMed PMID: 24126220; PubMed Central PMCID: PMC3871855.
Berthold A, Cremer K, Kreuter J. Preparation and characterization of chitosan microspheres as drug carrier for prednisolone sodium phosphate as model for anti-inflammatory drugs. Journal of Controlled Release. 1996;39(1):17-25. doi: https://doi.org/10.1016/0168-3659(95)00129-8.
Egan LJ, Sandborn WJ. Methotrexate for inflammatory bowel disease: pharmacology and preliminary results. Mayo Clin Proc. 1996;71(1):69-80. Epub 1996/01/01. doi: 10.4065/71.1.69. PubMed PMID: 8538238.
Tan W, Zou J, Yoshida S, Jiang B, Zhou Y. The Role of Inflammation in Age-Related Macular Degeneration. Int J Biol Sci. 2020;16(15):2989-3001. doi: 10.7150/ijbs.49890. PubMed PMID: 33061811.
Witmer AN, Vrensen GF, Van Noorden CJ, Schlingemann RO. Vascular endothelial growth factors and angiogenesis in eye disease. Prog Retin Eye Res. 2003;22(1):1-29. Epub 2003/02/25. doi: 10.1016/s1350-9462(02)00043-5. PubMed PMID: 12597922.
Adamis AP, Shima DT. The role of vascular endothelial growth factor in ocular health and disease. Retina. 2005;25(2):111-8. Epub 2005/02/04. doi: 10.1097/00006982-200502000-00001. PubMed PMID: 15689799.
Taylor SR, Habot-Wilner Z, Pacheco P, Lightman SL. Intraocular methotrexate in the treatment of uveitis and uveitic cystoid macular edema. Ophthalmology. 2009;116(4):797-801. Epub 2009/04/07. doi: 10.1016/j.ophtha.2008.10.033. PubMed PMID: 19344827.
Soheilian M, Movaseghi M, Ramezani A, Peyman GA. Pilot study of safety and effect of combined intravitreal bevacizumab and methotrexate for neovascular age-related macular degeneration. Eur J Ophthalmol. 2011;21(1):77-82. Epub 2010/09/28. doi: 10.5301/ejo.2010.5696. PubMed PMID: 20872362.
- Abstract Viewed: 167 times
- pdf Downloaded: 73 times