Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences
  • Register
  • Login

Urology Journal

  • Home
  • Instant Online
    • Instant 2023
    • Instant 2022
    • Instant 2021
    • Instant 2020
  • Current
  • Archives
  • Announcements
  • Submissions
  • Author Guidelines
  • About
    • About the Journal
    • Privacy Statement
    • Contact
Advanced Search
  1. Home
  2. Archives
  3. Vol. 20 (2023): Instant 2023
  4. ORIGINAL PAPER (ANDROLOGY)

ISSN: 1735-1308

Instant 2023
Vol. 20 (2023)

Seminal Plasma ExLncRNA Pairs: Updating Perspectives in The Search for Testicular Spermatozoa Retrieval Biomarkers in Nonobstructive Azoospermia Patients with mTESE by WGCNA

  • Haiming Cao
  • Chuntao Wang
  • Ruilin Cai
  • Zi Wan
  • Lin Ma

Urology Journal, Vol. 20 (2023), , Page 7323
https://doi.org/10.22037/uj.v20i.7323 Published 19 February 2023

  • View Article
  • Download
  • Cite
  • References
  • Statastics
  • Share

Abstract

Purpose: This study aims to find candidates for testicular spermatozoa retrieval biomarkers among the seminal plasma exLncRNA pairs.


Materials and Methods: A set of exLncRNA pairs with the best potential biomarkers was selected and validated in 96 NOA samples. Weighted correlation network analysis (WGCNA) and Least Absolute Shrinkage and Selection Operator were used to identify possible biomarkers for these pairs (LASSO). These pairs' potential biomarkers were identified using receiver operating curves. Confusion matrices and sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), FP, false-negative rates (FNR), and F1 scores are calculated. Through F1 scores, we selected the best threshold value.


Results: The relative differential expression of each pair in testicular spermatozoa retrieval (+) and testicular spermatozoa retrieval (-) men were validated.


The six pairs displayed the best biomarker potential. Among them, CCDC37.DT-LOCI00505685 pair and LOC440934- LOCI01929088 (XR_001745218.1) pair showed the most significant potential and stability for detecting testicular spermatozoa retrieval in the selected and validated cohort.


Conclusion: CCDC37.DT-LOCI00505685 pair and LOC440934- LOCI01929088 (XR_001745218.1) pair have the potential to become new molecular biomarkers that could help to select clinical strategies for microdissection testicular sperm extraction.

Keywords:
  • nonobstructive azoospermia, seminal plasma, LncRNA, prediction
  • Just Accepted-7323

How to Cite

Cao, H., Wang, C., Cai, R., Wan, Z., & Ma, L. (2023). Seminal Plasma ExLncRNA Pairs: Updating Perspectives in The Search for Testicular Spermatozoa Retrieval Biomarkers in Nonobstructive Azoospermia Patients with mTESE by WGCNA. Urology Journal, 20, 7323. https://doi.org/10.22037/uj.v20i.7323
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

References

Cocuzza M, Alvarenga C, Pagani R. The epidemiology and etiology of azoospermia. Clinics (Sao Paulo). 2013;68 Suppl 1:15-26.

Kolettis PN. The evaluation and management of the azoospermic patient. J Androl. 2002;23:293-305.

Liu X, Chen Y, Tang W, et al. Single-cell transcriptome analysis of the novel coronavirus (SARS-CoV-2) associated gene ACE2 expression in normal and non-obstructive azoospermia (NOA) human male testes. Sci China Life Sci. 2020;63:1006-15.

Esteves SC. Clinical management of infertile men with nonobstructive azoospermia. Asian J Androl. 2015;17:459-70.

Ishikawa T, Nose R, Yamaguchi K, Chiba K, Fujisawa M. Learning curves of microdissection testicular sperm extraction for nonobstructive azoospermia. Fertil Steril. 2010;94:1008-11.

Okada H, Dobashi M, Yamazaki T, et al. Conventional versus microdissection testicular sperm extraction for nonobstructive azoospermia. J Urol. 2002;168:1063-7.

Ramasamy R, Yagan N, Schlegel PN. Structural and functional changes to the testis after conventional versus microdissection testicular sperm extraction. Urology. 2005;65:1190-4.

Tsujimura A, Matsumiya K, Miyagawa Y, et al. Prediction of successful outcome of microdissection testicular sperm extraction in men with idiopathic nonobstructive azoospermia. J Urol. 2004;172:1944-7.

Klonoff-Cohen HS, Natarajan L. The effect of advancing paternal age on pregnancy and live birth rates in couples undergoing in vitro fertilization or gamete intrafallopian transfer. Am J Obstet Gynecol. 2004;191:507-14.

Jarvi K, Lo K, Fischer A, et al. CUA Guideline: The workup of azoospermic males. Can Urol Assoc J. 2010;4:163-7.

Aydos K, Unlu C, Demirel LC, Evirgen O, Tolunay O. The effect of pure FSH administration in non-obstructive azoospermic men on testicular sperm retrieval. Eur J Obstet Gynecol Reprod Biol. 2003;108:54-8.

Ezeh UI, Moore HD, Cooke ID. A prospective study of multiple needle biopsies versus a single open biopsy for testicular sperm extraction in men with non-obstructive azoospermia. Hum Reprod. 1998;13:3075-80.

Gnessi L, Scarselli F, Minasi MG, et al. Testicular histopathology, semen analysis and FSH, predictive value of sperm retrieval: supportive counseling in case of reoperation after testicular sperm extraction (TESE). BMC Urol. 2018;18:63.

Bohring C, Schroeder-Printzen I, Weidner W, Krause W. Serum levels of inhibin B and follicle-stimulating hormone may predict successful sperm retrieval in men with azoospermia who are undergoing testicular sperm extraction. Fertil Steril. 2002;78:1195-8.

Ballesca JL, Balasch J, Calafell JM, et al. Serum inhibin B determination is predictive of successful testicular sperm extraction in men with non-obstructive azoospermia. Hum Reprod. 2000;15:1734-8.

Cissen M, Meijerink AM, D'Hauwers KW, et al. Prediction model for obtaining spermatozoa with testicular sperm extraction in men with non-obstructive azoospermia. Hum Reprod. 2016;31:1934-41.

Yang Q, Huang YP, Wang HX, et al. Follicle-stimulating hormone as a predictor for sperm retrieval rate in patients with nonobstructive azoospermia: a systematic review and meta-analysis. Asian J Androl. 2015;17:281-4.

Li H, Chen LP, Yang J, et al. Predictive value of FSH, testicular volume, and histopathological findings for the sperm retrieval rate of microdissection TESE in nonobstructive azoospermia: a meta-analysis. Asian J Androl. 2018;20:30-6.

Hashemi MS, Mozdarani H, Ghaedi K, Nasr-Esfahani MH. Expression of ZMYND15 in Testes of Azoospermic Men and Association With Sperm Retrieval. Urology. 2018;114:99-104.

Hashemi MS, Mozdarani H, Ghaedi K, Nasr-Esfahani MH. Among seven testis-specific molecular markers, SPEM1 appears to have a significant clinical value for prediction of sperm retrieval in azoospermic men. Andrology. 2018;6:890-5.

Hashemi MS, Mozdarani H, Ghaedi K, Nasr-Esfahani MH. Could analysis of testis-specific genes, as biomarkers in seminal plasma, predict presence of focal spermatogenesis in non-obstructive azoospermia? Andrologia. 2020;52:e13483.

Vojtech L, Woo S, Hughes S, et al. Exosomes in human semen carry a distinctive repertoire of small non-coding RNAs with potential regulatory functions. Nucleic Acids Res. 2014;42:7290-304.

Mercer TR, Dinger ME, Mattick JS. Long non-coding RNAs: insights into functions. Nat Rev Genet. 2009;10:155-9.

Zhang C, Gao L, Xu EY. LncRNA, a new component of expanding RNA-protein regulatory network important for animal sperm development. Semin Cell Dev Biol. 2016;59:110-7.

Wen K, Yang L, Xiong T, et al. Critical roles of long noncoding RNAs in Drosophila spermatogenesis. Genome Res. 2016;26:1233-44.

Li L, Wang M, Wang M, et al. A long non-coding RNA interacts with Gfra1 and maintains survival of mouse spermatogonial stem cells. Cell Death Dis. 2016;7:e2140.

Hong SH, Kwon JT, Kim J, et al. Profiling of testis-specific long noncoding RNAs in mice. BMC Genomics. 2018;19:539.

Satoh Y, Takei N, Kawamura S, Takahashi N, Kotani T, Kimura AP. A novel testis-specific long noncoding RNA, Tesra, activates the Prss42/Tessp-2 gene during mouse spermatogenesisdagger. Biol Reprod. 2019;100:833-48.

Xie Y, Yao J, Zhang X, et al. A panel of extracellular vesicle long noncoding RNAs in seminal plasma for predicting testicular spermatozoa in nonobstructive azoospermia patients. Hum Reprod. 2020;35:2413-27.

Vogt PH. AZF deletions and Y chromosomal haplogroups: history and update based on sequence. Hum Reprod Update. 2005;11:319-36.

Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 2008;9:559.

Liu R, Yuan M, Xu H, Chen P, Xu XS, Yang Y. Adaptive weighted sum tests via LASSO method in multi-locus family-based association analysis. Comput Biol Chem. 2020;88:107320.

Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9:654-9.

Zhang Y, Liu Y, Liu H, Tang WH. Exosomes: biogenesis, biologic function and clinical potential. Cell Biosci. 2019;9:19.

Poliakov A, Spilman M, Dokland T, Amling CL, Mobley JA. Structural heterogeneity and protein composition of exosome-like vesicles (prostasomes) in human semen. Prostate. 2009;69:159-67.

Nilsson J, Skog J, Nordstrand A, et al. Prostate cancer-derived urine exosomes: a novel approach to biomarkers for prostate cancer. Br J Cancer. 2009;100:1603-7.

Burden HP, Holmes CH, Persad R, Whittington K. Prostasomes--their effects on human male reproduction and fertility. Hum Reprod Update. 2006;12:283-92.

Yang C, Guo WB, Zhang WS, et al. Comprehensive proteomics analysis of exosomes derived from human seminal plasma. Andrology. 2017;5:1007-15.

Barcelo M, Mata A, Bassas L, Larriba S. Exosomal microRNAs in seminal plasma are markers of the origin of azoospermia and can predict the presence of sperm in testicular tissue. Hum Reprod. 2018;33:1087-98.

Batista PJ, Chang HY. Long noncoding RNAs: cellular address codes in development and disease. Cell. 2013;152:1298-307.

Zhu Z, Li C, Yang S, et al. Dynamics of the Transcriptome during Human Spermatogenesis: Predicting the Potential Key Genes Regulating Male Gametes Generation. Sci Rep. 2016;6:19069.

Jan SZ, Vormer TL, Jongejan A, et al. Unraveling transcriptome dynamics in human spermatogenesis. Development. 2017;144:3659-73.

Rolland AD, Evrard B, Darde TA, et al. RNA profiling of human testicular cells identifies syntenic lncRNAs associated with spermatogenesis. Hum Reprod. 2019;34:1278-90.

Sendler E, Johnson GD, Mao S, et al. Stability, delivery and functions of human sperm RNAs at fertilization. Nucleic Acids Res. 2013;41:4104-17.

Zhang X, Zhang P, Song D, et al. Expression profiles and characteristics of human lncRNA in normal and asthenozoospermia spermdagger. Biol Reprod. 2019;100:982-93.

  • Abstract Viewed: 0 times
  • Just Accepted-7323 Downloaded: 0 times

Download Statastics

  • Linkedin
  • Twitter
  • Facebook
  • Google Plus
  • Telegram

In case of persistent problems in registration, primary uploading of a submission or uploading of a revision, please send us the submission files on the journal email at:

urologyjournal@sbmu.ac.ir

and please attach the screenshot of the error or problem you encountered in uploading.

 

Make a Submission

          Journal Research in Urology

Information
  • For Readers
  • For Authors
Keywords
  • Home
  • Archives
  • Submissions
  • About the Journal
  • Editorial Team
  • Contact
The template of this website is designed by Sinaweb