Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences
  • Register
  • Login

Urology Journal

  • Home
  • Instant Online
    • Instant 2023
    • Instant 2022
    • Instant 2021
    • Instant 2020
  • Current
  • Archives
  • Announcements
  • Submissions
  • Author Guidelines
  • About
    • About the Journal
    • Privacy Statement
    • Contact
Advanced Search
  1. Home
  2. Archives
  3. Vol. 17 No. 3 (2020): May-June 2020
  4. UNCLASSIFIED

ISSN: 1735-1308

May-June 2020
Vol. 17 No. 3 (2020)

Effects of 1% lidocaine instillation on overactive bladder induced by bladder outlet obstruction in rats

  • Hyo Jin Kang
  • Sang Woon Kim
  • Yong Seung Lee
  • Sang Won Han
  • Jang Hwan Kim

Urology Journal, Vol. 17 No. 3 (2020), , Page 306-311
https://doi.org/10.22037/uj.v0i0.5111 Published 16 May 2020

  • View Article
  • Download
  • Cite
  • References
  • Statastics
  • Share

Abstract

Purpose:

Lidocaine is a common local anesthetic and antiarrhythmic drug that acts via the local anesthetic effect of blocking voltage-gated sodium channels in peripheral neurons. To evaluate lidocaine as a therapeutic agent, we investigated optimal concentrations and effects of intravesical lidocaine instillation in a bladder outlet obstruction (BOO)-induced rat model of overactive bladder (OAB).

Materials and Methods:

To determine the therapeutic dosage of lidocaine, 16 female Sprague-Dawley (SD) rats (mean weight = 200 ± 20 g) were divided into four treatment groups: those receiving saline, 0.5% lidocaine, 1% lidocaine, and 2% lidocaine (n = 4 per group). Twenty-four additional SD rats were divided into two groups to investigate the effect of 1% lidocaine treatment in rats with BOO and normal rats (n = 12 per group). Cystometry was performed by infusing physiological saline and lidocaine into the bladder at a slow infusion rate (0.04 mL/min). Cystometric parameters were analyzed using PowerLab®. The expression of c-Fos, a protein expressed by C-fibers in the spinal cord (L6), was investigated via western blotting.

Results:

Among the test lidocaine doses, only 1% lidocaine increased the intercontraction interval (ICI) (control mean = 500.56 ± 24.4 s; treatment mean = 641.0 ± 49.3 s; p < .01) without changes in threshold pressure and basal pressure. In the BOO-induced OAB group, the ICI increased significantly after instillation of 1% lidocaine (control mean = 135.8 ± 12.87 s; OAB-group mean = 274.2 ± 33.21 s; p < .01). Detrusor overactivity and non-voiding contraction were observed in the control group but not in rats with BOO after lidocaine instillation. The expression of c-Fos in C-fibers in the spinal cord (L6) decreased significantly after 1% lidocaine treatment in rats with BOO.

Conclusion:

Intravesical instillation of 1% lidocaine improves cystometric parameters without deterioration of contractility by blocking excessive C-fiber activity in the rat model of BOO-induced OAB. Therefore, instillation of 1% lidocaine has minimal effects on normal nerves while blocking nerves that contribute to OAB. Our findings suggest that intravesical instillation of 1% lidocaine is a useful treatment for OAB.
  • pdf/5111

How to Cite

Kang, H. J., Kim, S. W., Lee, Y. S., Han, S. W., & Kim, J. H. (2020). Effects of 1% lidocaine instillation on overactive bladder induced by bladder outlet obstruction in rats. Urology Journal, 17(3), 306-311. https://doi.org/10.22037/uj.v0i0.5111
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

References

Song M, Heo J, Chun JY, et al. The paracrine effects of mesenchymal stem cells stimulate the regeneration capacity of endogenous stem cells in the repair of a bladder-outlet-obstruction-induced overactive bladder. Stem Cells Dev. 2014;23:654-663.

Jun JH, Kang HJ, Jin MH, et al. Function of the Cold Receptor (TRPM8) Associated with Voiding Dysfunction in Bladder Outlet Obstruction in Rats. Int Neurourol J. 2012;16:69-76.

Rahnama'i MS, Van Koeveringe GA, Van Kerrebroeck PE. Overactive Bladder Syndrome and the Potential Role of Prostaglandins and Phosphodiesterases: An Introduction. Nephrourol Mon. 2013;5:934-945.

Lee WC, Chiang PH, Tain YL, Wu CC, Chuang YC. Sensory dysfunction of bladder mucosa and bladder oversensitivity in a rat model of metabolic syndrome. PLoS One. 2012;7:e45578.

Lee SR, Hong CH, Choi YD, Kim JH. Increased urinary nerve growth factor as a predictor of persistent detrusor overactivity after bladder outlet obstruction relief in a rat model. J Urol. 2010;183:2440-2444.

Cho KJ, Park EY, Kim HS, Koh JS, Kim JC. Expression of transient receptor potential vanilloid 4 and effects of ruthenium red on detrusor overactivity associated with bladder outlet obstruction in rats. World J Urol. 2013; doi:10.1007/s00345-013-1099-y.

Juszczak K, Ziomber A, Wyczolkowski M, Thor PJ. Urodynamic effects of the bladder C-fiber afferent activity modulation in chronic model of overactive bladder in rats. J Physiol Pharmacol. 2009;60:85-91.

Craig AD. How do you feel? Interoception: the sense of the physiological condition of the body. Nat Rev Neurosci. 2002;3:655-666.

Steers WD. Pathophysiology of overactive bladder and urge urinary incontinence. Rev Urol. 2002;4 Suppl 4:S7-S18.

Ragsdale DS, McPhee JC, Scheuer T, Catterall WA. Common molecular determinants of local anesthetic, antiarrhythmic, and anticonvulsant block of voltage-gated Na+ channels. Proc Natl Acad Sci U S A. 1996;93:9270-9275.

Yokoyama O, Komatsu K, Kodama K, Yotsuyanagi S, Niikura S, Namiki M. Diagnostic value of intravesical lidocaine for overactive bladder. J Urol. 2000;164:340-343.

Guerios SD, Wang ZY, Boldon K, Bushman W, Bjorling DE. Lidocaine prevents referred hyperalgesia associated with cystitis. Neurourol Urodyn. 2009;28:455-460.

Cummins TR. Setting up for the block: the mechanism underlying lidocaine's use-dependent inhibition of sodium channels. J Physiol. 2007;582:11.

Colaco MA, Evans RJ. Current recommendations for bladder instillation therapy in the treatment of interstitial cystitis/bladder pain syndrome. Curr Urol Rep. 2013;14:442-447.

Irwin DE, Milsom I, Kopp Z, Abrams P, Cardozo L. Impact of overactive bladder symptoms on employment, social interactions and emotional well-being in six European countries. BJU Int. 2006;97:96-100.

Silva C, Ribeiro MJ, Cruz F. The effect of intravesical resiniferatoxin in patients with idiopathic detrusor instability suggests that involuntary detrusor contractions are triggered by C-fiber input. J Urol. 2002;168:575-579.

Lazzeri M, Beneforti P, Turini D. Urodynamic effects of intravesical resiniferatoxin in humans: preliminary results in stable and unstable detrusor. J Urol. 1997;158:2093-2096.

Edlund C, Peeker R, Fall M. Lidocaine cystometry in the diagnosis of bladder overactivity. Neurourol Urodyn. 2001;20:147-155.

  • Abstract Viewed: 314 times
  • pdf/5111 Downloaded: 90 times

Download Statastics

  • Linkedin
  • Twitter
  • Facebook
  • Google Plus
  • Telegram

In case of persistent problems in registration, primary uploading of a submission or uploading of a revision, please send us the submission files on the journal email at:

urologyjournal@sbmu.ac.ir

and please attach the screenshot of the error or problem you encountered in uploading.

 

Make a Submission

          Journal Research in Urology

Information
  • For Readers
  • For Authors
Keywords
  • Home
  • Archives
  • Submissions
  • About the Journal
  • Editorial Team
  • Contact
The template of this website is designed by Sinaweb