A Review of the Latest Machine Learning Advances in Cataract Diagnosis
Journal of Ophthalmic and Optometric Sciences,
Vol. 4 No. 4 (2020),
3 August 2022
,
Page 46-60
https://doi.org/10.22037/joos.v4i4.39214
Abstract
Cataract disorder is one of the most common vision disorders in the world. As the average age of the world population increases, many people suffer from it in middle and old age. Timely diagnosis can prevent the reduction of vision and eventually loss of sight. Considering the prevalence of Artificial Intelligence algorithms, especially in the medical industry, they could be used for Cataract diagnosis, IOL determination, and PCO diagnosis. According to the studies, the proposed models for Cataract diagnosis are very accurate. These developed algorithms have been able to make access to ophthalmology services easier and reduce treatment costs significantly.
- Artificial Intelligence
- Cataract
- IOL
- Machine Learning
- PCO
How to Cite
References
Allen D. Cataract. Clin Evid. 2004;(12):933–8.
Blindness and vision impairment. Available from: https://www.who.int/news-room/fact-sheets/detail/blindness-and-visual-impairment.
Flaxman SR, Bourne RRA, Resnikoff S, Ackland P, Braithwaite T, Cicinelli M v., et al. Global causes of blindness and distance vision impairment 1990-2020: a systematic review and meta-analysis. Lancet Glob Health. 2017;5(12):e1221–34.
Zhang XQ, Hu Y, Xiao ZJ, Fang JS, Higashita R, Liu J. Machine Learning for Cataract Classification/Grading on Ophthalmic Imaging Modalities: A Survey. Machine Intelligence Research. 2022;19(3):184–208.
Wang W, Yan W, Fotis K, Prasad NM, Lansingh VC, Taylor HR, et al. Cataract Surgical Rate and Socioeconomics: A Global Study. Invest Ophthalmol Vis Sci. 2016;57(14):5872–81.
Erie JC. Rising cataract surgery rates: demand and supply. Ophthalmology . 2014;121(1):2–4.
Ahuja AS, Halperin LS. Understanding the advent of artificial intelligence in ophthalmology. J Curr Ophthalmol. 2019;31(2):115–7.
Sudhir RR, Dey A, Bhattacharrya S, Bahulayan A. AcrySof IQ PanOptix Intraocular Lens Versus Extended Depth of Focus Intraocular Lens and Trifocal Intraocular Lens: A Clinical Overview. Asia Pac J Ophthalmol (Phila). 2019;8(4):335.
Ting DSJ, Rees J, Ng JY, Allen D, Steel DHW. Effect of high-vacuum setting on phacoemulsification efficiency. J Cataract Refract Surg. 2017;43(9):1135–9.
Pettit RW, Fullem R, Cheng C, Amos CI. Artificial intelligence, machine learning, and deep learning for clinical outcome prediction. Emerg Top Life Sci. 2021;5(6):729–45.
Pavel AM, Rennie JM, de Vries LS, Blennow M, Foran A, Shah DK, et al. A machine-learning algorithm for neonatal seizure recognition: a multicentre, randomised, controlled trial. Lancet Child Adolesc Health. 2020;4(10):740–9.
al Hajj H, Lamard M, Conze PH, Roychowdhury S, Hu X, Maršalkaitė G, et al. CATARACTS: Challenge on automatic tool annotation for cataRACT surgery. Med Image Anal. 2019; 52:24–41.
Allen D, Vasavada A. Cataract and surgery for cataract. BMJ : British Medical Journal. 2006; 333(7559):128. Available from: /pmc/articles/PMC1502210/
Chen W, Chang J, Zhao X, Liu S. Optical design and fabrication of a smartphone fundus camera. Appl Opt. 2021;60(5):1420.
Plesch A, Klingbeil U, Bille J. Digital laser scanning fundus camera. Appl Opt. 1987;26(8):1480.
Cao L, Li H, Zhang Y, Zhang L, Xu L. Hierarchical method for cataract grading based on retinal images using improved Haar wavelet. Information Fusion. 2020;53:196-208.
Gellrich MM. [The slit lamp as videography console : Video article]. Ophthalmologe. 2018 ;115(10):885–92. Available from: https://pubmed.ncbi.nlm.nih.gov/30006769/
MacDonald WW, Swaminathan SS, Heo JY, Castillejos A, Hsueh J, Liu BJ, et al. Effect of SPARC Suppression in Mice, Perfused Human Anterior Segments, and Trabecular Meshwork Cells. Investigative Opthalmology & Visual Science. 2022;63(6):8.
Fercher AF, Li HC, Hitzenberger CK. Slit lamp laser doppler interferometer. Lasers Surg Med. 1993;13(4):447–52.
5 Most Important Slit Lamp Features | Coburn Technologies. Available from: https://www.coburntechnologies.com/2017/02/21/5-important-slit-lamp-features/
Lee CS, Tyring AJ, Deruyter NP, Wu Y, Rokem A, Lee AY. Deep-learning based, automated segmentation of macular edema in optical coherence tomography. Biomed Opt Express. 2017;8(7):3440. Available from: /pmc/articles/PMC5508840/
Janiesch C, Zschech P, Heinrich K. Machine learning and deep learning. Electronic Markets. 2021;31(3):685–95.
Chauhan NK, Singh K. A review on conventional machine learning vs deep learning. 2018 International Conference on Computing, Power and Communication Technologies, GUCON 2018. 2019;347–52.
Lecun Y, Bengio Y, Hinton G. Deep learning. Nature 2015 521:7553. 2015;521(7553):436–44.
Mahmud M, Kaiser MS, Hussain A, Vassanelli S. Applications of Deep Learning and Reinforcement Learning to Biological Data. IEEE Trans Neural Netw Learn Syst. 2018;29(6):2063–79.
dbGaP Study. Available from: https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000001.v3.p1&phv=53743&phd=1&pha=2856&pht=371&phvf=&phdf=&phaf=&phtf=&dssp=1&consent=&temp=1
Li F, Wang Z, Qu G, Song D, Yuan Y, Xu Y, et al. Automatic differentiation of Glaucoma visual field from non-glaucoma visual filed using deep convolutional neural network. BMC Med Imaging. 2018 ;18(1).
Grammatikopoulou M, Flouty E, Kadkhodamohammadi A, Quellec G, Chow A, Nehme J, et al. CaDIS: Cataract dataset for surgical RGB-image segmentation. Med Image Anal. 2021;71:102053.
Yang JJ, Li J, Shen R, Zeng Y, He J, Bi J, et al. Exploiting ensemble learning for automatic cataract detection and grading. Comput Methods Programs Biomed. 2016;124:45–57.
Xu X, Zhang L, Li J, Guan Y, Zhang L. A Hybrid Global-Local Representation CNN Model for Automatic Cataract Grading. IEEE J Biomed Health Inform. 2020;24(2):556–67.
Gao X, Lin S, Wong TY. Automatic Feature Learning to Grade Nuclear Cataracts Based on Deep Learning. IEEE Trans Biomed Eng. 2015;62(11):2693–701.
Li W, Yang Y, Zhang K, Long E, He L, Zhang L, et al. Dense anatomical annotation of slit-lamp images improves the performance of deep learning for the diagnosis of ophthalmic disorders. Nat Biomed Eng. 2020;4(8):767–77.
Xu Y, Gao X, Lin S, Wong DWK, Liu J, Xu D, et al. Automatic grading of nuclear cataracts from slit-lamp lens images using group sparsity regression. Med Image Comput Comput Assist Interv. 2013;16(Pt 2):468–75.
Zhang L, Li J, Zhang I, Han H, Liu B, Yang J, et al. Automatic cataract detection and grading using Deep Convolutional Neural Network. Proceedings of the 2017 IEEE 14th International Conference on Networking, Sensing and Control, ICNSC 2017. 2017;60–5.
Dong Y, Zhang Q, Qiao Z, Yang JJ. Classification of cataract fundus image based on deep learning. IST 2017 - IEEE International Conference on Imaging Systems and Techniques, Proceedings. 2017:1–5.
Lu Q, Wei L, He W, Zhang K, Wang J, Zhang Y, et al. Lens Opacities Classification System III–based artificial intelligence program for automatic cataract grading. Journal of Cataract & Refractive Surgery. 2022;48(5):528-34.
Garcia Nespolo R, Yi D, Cole E, Valikodath N, Luciano C, Leiderman YI. Evaluation of Artificial Intelligence–Based Intraoperative Guidance Tools for Phacoemulsification Cataract Surgery. JAMA Ophthalmol. 2022;140(2):170–7.
Touma S, Antaki F, Duval R. Development of a code-free machine learning model for the classification of cataract surgery phases. Scientific Reports 2022 12:1. 2022;12(1):1–7.
Paul Jacob A, Bansal A, Malhotra R. A Novel Approach for Early Recognition of Cataract using VGG-16 and Custom User-based Region of Interest. ACM International Conference Proceeding Series. 2022;15–8.
Matton N, Qalieh A, Zhang Y, Annadanam A, Thibodeau A, Li T, et al. Analysis of Cataract Surgery Instrument Identification Performance of Convolutional and Recurrent Neural Network Ensembles Leveraging BigCat. Transl Vis Sci Technol. 2022;11(4):1–1.
Junayed MS, Islam MB, Sadeghzadeh A, Rahman S. CataractNet: An automated cataract detection system using deep learning for fundus images. IEEE Access. 2021;9:128799–808.
Hee MR. State-of-the-art of intraocular lens power formulas. Vol. 133, JAMA Ophthalmology. American Medical Association; 2015. p. 1436–7.
Wu X, Huang Y, Liu Z, Lai W, Long E, Zhang K, et al. Universal artificial intelligence platform for collaborative management of cataracts. Br J Ophthalmol. 2019;103(11):1553–60.
IOLcalc - Ladas Super Formula. [cited 2022 May 6]. Available from: https://www.iolcalc.com/
Ladas J, Ladas D, Lin SR, Devgan U, Siddiqui AA, Jun AS. Improvement of Multiple Generations of Intraocular Lens Calculation Formulae with a Novel Approach Using Artificial Intelligence. Transl Vis Sci Technol. 2021;10(3):7–7.
Connell BJ, Kane JX. Comparison of the Kane formula with existing formulas for intraocular lens power selection. BMJ Open Ophthalmol. 2019;4(1):e000251.
Fernández-Álvarez JC, Hernández-López I, Cruz-Cobas PP, Cárdenas-Díaz T, Batista-Leyva AJ. Using a multilayer perceptron in intraocular lens power calculation. J Cataract Refract Surg. 2019;45(12):1753–61.
Carmona González D, Palomino Bautista C. Accuracy of a new intraocular lens power calculation method based on artificial intelligence. Eye (Lond). 2021;35(2):517–22.
Savini G, di Maita M, Hoffer KJ, Næser K, Schiano-Lomoriello D, Vagge A, et al. Comparison of 13 formulas for IOL power calculation with measurements from partial coherence interferometry. Br J Ophthalmol. 2021;105(4):484–9.
Khatib ZI, Haldipurkar SS, Shetty V, Dahake H, Nagvekar P, Kashelkar P. Comparison of three newer generation freely available intraocular lens power calculation formulae across all axial lengths. Indian J Ophthalmol. 2021;69(3):580.
Sramka M, Slovak M, Tuckova J, Stodulka P. Improving clinical refractive results of cataract surgery by machine learning. PeerJ. 2019;2019(7).
Kane JX, van Heerden A, Atik A, Petsoglou C. Accuracy of 3 new methods for intraocular lens power selection. J Cataract Refract Surg. 2017;43(3):333–9.
Ladas JG, Siddiqui AA, Devgan U, Jun AS. A 3-D super surface combining modern intraocular lens formulas to generate a super formula and maximize accuracy. JAMA Ophthalmol. 2015;133(12):1431–6.
Ursell PG, Dhariwal M, Majirska K, Ender F, Kalson-Ray S, Venerus A, et al. Three-year incidence of Nd:YAG capsulotomy and posterior capsule opacification and its relationship to monofocal acrylic IOL biomaterial: a UK Real World Evidence study. Eye (Lond). 2018;32(10):1579–89.
Mohammadi SF, Sabbaghi M, Z-Mehrjardi H, Hashemi H, Alizadeh S, Majdi M, et al. Using artificial intelligence to predict the risk for posterior capsule opacification after phacoemulsification. J Cataract Refract Surg. 2012;38(3):403–8.
Jiang J, Liu X, Liu L, Wang S, Long E, Yang H, et al. Predicting the progression of ophthalmic disease based on slit-lamp images using a deep temporal sequence network. PLoS One. 2018;13(7):e0201142.
- Abstract Viewed: 434 times
- pdf Downloaded: 135 times