Optical Coherence Tomography Interpretation for Glaucoma
Journal of Ophthalmic and Optometric Sciences,
Vol. 5 No. 4 (2021),
1 May 2023
,
Page 61-79
https://doi.org/10.22037/joos.v5i4.38514
Abstract
Structural glaucomatous changes occur more frequently in the earlier stages of glaucoma than functional defects so we should give special care on oct (optical coherence tomography) importance as the best current method. RNFL change detection are more useful in early glaucoma, GCC in moderate to advanced glaucoma while visual field test is more useful in advanced stages but overall using a combination of RNFL, ONH and macular measurement modalities is recommended for glaucoma evaluation because each of these parameters may be affected earlier than the others so, taking into account the findings from the RNFL, ONH and macula enhances early diagnosis of glaucoma.
- Optical Coherence Tomography
- Glaucoma
- Optic Nerve
How to Cite
References
Jonas J, Mardin CY, Schlötzer-Schrehardt U, Naumann G. Morphometry of the human lamina cribrosa surface. Investigative ophthalmology & visual science. 1991;32(2):401-5.
Strouthidis NG, Girard MJ. Altering the way the optic nerve head responds to intraocular pressure—a potential approach to glaucoma therapy. Current opinion in pharmacology. 2013;13(1):83-9.
Paulo A, Vaz PG, Andrade De Jesus D, Sánchez Brea L, Van Eijgen J, Cardoso J, et al. Optical coherence tomography imaging of the lamina cribrosa: Structural biomarkers in nonglaucomatous diseases. Journal of Ophthalmology. 2021;2021.
Medeiros FA, Alencar LM, Zangwill LM, Sample PA, Weinreb RN. The relationship between intraocular pressure and progressive retinal nerve fiber layer loss in glaucoma. Ophthalmology. 2009;116(6):1125-33. e3.
Hood DC, Kardon RH. A framework for comparing structural and functional measures of glaucomatous damage. Progress in retinal and eye research. 2007;26(6):688-710.
Kerrigan–Baumrind LA, Quigley HA, Pease ME, Kerrigan DF, Mitchell RS. Number of ganglion cells in glaucoma eyes compared with threshold visual field tests in the same persons. Investigative ophthalmology & visual science. 2000;41(3):741-8.
Miki A, Medeiros FA, Weinreb RN, Jain S, He F, Sharpsten L, et al. Rates of retinal nerve fiber layer thinning in glaucoma suspect eyes. Ophthalmology. 2014;121(7):1350-8.
Yu M, Lin C, Weinreb RN, Lai G, Chiu V, Leung CK-S. Risk of visual field progression in glaucoma patients with progressive retinal nerve fiber layer thinning: a 5-year prospective study. Ophthalmology. 2016;123(6):1201-10.
Sommer A, Katz J, Quigley HA, Miller NR, Robin AL, Richter RC, et al. Clinically detectable nerve fiber atrophy precedes the onset of glaucomatous field loss. Archives of ophthalmology. 1991;109(1):77-83.
Kuang TM, Zhang C, Zangwill LM, Weinreb RN, Medeiros FA. Estimating lead time gained by optical coherence tomography in detecting glaucoma before development of visual field defects. Ophthalmology. 2015;122(10):2002-9.
Akman A, Bayer A, Nouri-Mahdavi K. Optical coherence tomography in glaucoma: a practical guide: Springer; 2018.
Wollstein G, Schuman JS, Price LL, Aydin A, Stark PC, Hertzmark E, et al. Optical coherence tomography longitudinal evaluation of retinal nerve fiber layer thickness in glaucoma. Archives of ophthalmology. 2005;123(4):464-70.
Strouthidis NG, Scott A, Peter NM, Garway-Heath DF. Optic disc and visual field progression in ocular hypertensive subjects: detection rates, specificity, and agreement. Investigative ophthalmology & visual science. 2006;47(7):2904-10.
Quigley HA, Katz J, Derick RJ, Gilbert D, Sommer A. An evaluation of optic disc and nerve fiber layer examinations in monitoring progression of early glaucoma damage. Ophthalmology. 1992;99(1):19-28.
Medeiros FA, Alencar LM, Zangwill LM, Bowd C, Sample PA, Weinreb RN. Prediction of functional loss in glaucoma from progressive optic disc damage. Archives of ophthalmology. 2009;127(10):1250.
Tan NY, Koh V, Girard MJ, Cheng CY. Imaging of the lamina cribrosa and its role in glaucoma: a review. Clinical & experimental ophthalmology. 2018;46(2):177-88.
Ivers KM, Li C, Patel N, Sredar N, Luo X, Queener H, et al. Reproducibility of measuring lamina cribrosa pore geometry in human and nonhuman primates with in vivo adaptive optics imaging. Investigative ophthalmology & visual science. 2011;52(8):5473-80.
Akagi T, Hangai M, Takayama K, Nonaka A, Ooto S, Yoshimura N. In vivo imaging of lamina cribrosa pores by adaptive optics scanning laser ophthalmoscopy. Investigative ophthalmology & visual science. 2012;53(7):4111-9.
Park H-YL, Jeon SH, Park CK. Enhanced depth imaging detects lamina cribrosa thickness differences in normal tension glaucoma and primary open-angle glaucoma. Ophthalmology. 2012;119(1):10-20.
Mari JM, Strouthidis NG, Park SC, Girard MJ. Enhancement of lamina cribrosa visibility in optical coherence tomography images using adaptive compensation. Investigative ophthalmology & visual science. 2013;54(3):2238-47.
Spaide RF, Koizumi H, Pozonni MC. Enhanced depth imaging spectral-domain optical coherence tomography. American journal of ophthalmology. 2008;146(4):496-500.
Ehrlich JR, Peterson J, Parlitsis G, Kay KY, Kiss S, Radcliffe NM. Peripapillary choroidal thickness in glaucoma measured with optical coherence tomography. Experimental eye research. 2011;92(3):189-94.
Hirooka K, Tenkumo K, Fujiwara A, Baba T, Sato S, Shiraga F. Evaluation of peripapillary choroidal thickness in patients with normal-tension glaucoma. BMC ophthalmology. 2012;12(1):1-6.
Imamura Y, Fujiwara T, Margolis R, Spaide RF. Enhanced depth imaging optical coherence tomography of the choroid in central serous chorioretinopathy. Retina. 2009;29(10):1469-73.
Huang W, Wang W, Zhou M, Chen S, Gao X, Fan Q, et al. Peripapillary choroidal thickness in healthy Chinese subjects. BMC ophthalmology. 2013;13(1):1-6.
Gupta P, Jing T, Marziliano P, Baskaran M, Cheung GC, Lamoureux EL, et al. Peripapillary choroidal thickness assessed using automated choroidal segmentation software in an Asian population. British Journal of Ophthalmology. 2015;99(7):920-6.
Rebolleda G, FJ MN. Enhanced Depth Imaging-optical coherence tomography technique and the lamina cribrosa in glaucoma. Archivos de la Sociedad Espanola de Oftalmologia. 2014;89(4):133-5.
Park H-YL, Park CK. Diagnostic capability of lamina cribrosa thickness by enhanced depth imaging and factors affecting thickness in patients with glaucoma. Ophthalmology. 2013;120(4):745-52.
Choma MA, Hsu K, Izatt JA. Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source. Journal of biomedical optics. 2005;10(4):044009.
Fujimoto J, Drexler W. Introduction to optical coherence tomography. Optical coherence tomography: Springer; 2008. p. 1-45.
Choma MA, Sarunic MV, Yang C, Izatt JA. Sensitivity advantage of swept source and Fourier domain optical coherence tomography. Optics express. 2003;11(18):2183-9.
Yun S, Tearney G, De Boer J, Bouma B. Pulsed-source and swept-source spectral-domain optical coherence tomography with reduced motion artifacts. Optics Express. 2004;12(23):5614-24.
Zhang J, Rao B, Chen Z, editors. Swept source based fourier domain functional optical coherence tomography. 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference; 2006: IEEE.
Munk MR, Giannakaki-Zimmermann H, Berger L, Huf W, Ebneter A, Wolf S, et al. OCT-angiography: a qualitative and quantitative comparison of 4 OCT-A devices. PloS one. 2017;12(5):e0177059.
Yang Z, Tatham AJ, Zangwill LM, Weinreb RN, Zhang C, Medeiros FA. Diagnostic ability of retinal nerve fiber layer imaging by swept-source optical coherence tomography in glaucoma. American journal of ophthalmology. 2015;159(1):193-201.
Vizzeri G, Bowd C, Medeiros FA, Weinreb RN, Zangwill LM. Effect of improper scan alignment on retinal nerve fiber layer thickness measurements using Stratus optical coherence tomograph. Journal of glaucoma. 2008;17(5):341.
Wu Z, Vazeen M, Varma R, Chopra V, Walsh AC, LaBree LD, et al. Factors associated with variability in retinal nerve fiber layer thickness measurements obtained by optical coherence tomography. Ophthalmology. 2007;114(8):1505-12.
Cheung CY, Chen D, Wong TY, Tham YC, Wu R, Zheng Y, et al. Determinants of quantitative optic nerve measurements using spectral domain optical coherence tomography in a population-based sample of non-glaucomatous subjects. Investigative ophthalmology & visual science. 2011;52(13):9629-35.
Akashi A, Kanamori A, Nakamura M, Fujihara M, Yamada Y, Negi A. Comparative assessment for the ability of Cirrus, RTVue, and 3D-OCT to diagnose glaucoma. Investigative ophthalmology & visual science. 2013;54(7):4478-84.
Yildiz A. OCT in Glaucoma Diagnosis, Detection and Screening. OCT-Applications in Ophthalmology: IntechOpen; 2018.
Bussel II, Wollstein G, Schuman JS. OCT for glaucoma diagnosis, screening and detection of glaucoma progression. British Journal of Ophthalmology. 2014;98(Suppl 2):ii15-ii9.
Duggan M, Asrani S. Practical Tips on OCT in Glaucoma.
Poinoosawmy D, Fontana L, Wu J, Fitzke F, Hitchings R. Variation of nerve fibre layer thickness measurements with age and ethnicity by scanning laser polarimetry. British Journal of Ophthalmology. 1997;81(5):350-4.
Leung CK, Lam S, Weinreb RN, Liu S, Ye C, Liu L, et al. Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: analysis of the retinal nerve fiber layer map for glaucoma detection. Ophthalmology. 2010;117(9):1684-91.
Dong ZM, Wollstein G, Schuman JS. Clinical utility of optical coherence tomography in glaucoma. Investigative Ophthalmology & Visual Science. 2016;57(9):OCT556-OCT67.
Wang X, Li S, Fu J, Wu G, Mu D, Li S, et al. Comparative study of retinal nerve fibre layer measurement by RTVue OCT and GDx VCC. British journal of ophthalmology. 2011;95(4):509-13.
Rao HL, Zangwill LM, Weinreb RN, Sample PA, Alencar LM, Medeiros FA. Comparison of different spectral domain optical coherence tomography scanning areas for glaucoma diagnosis. Ophthalmology. 2010;117(9):1692-9. e1.
Leung CK-s, Cheung CY-l, Weinreb RN, Qiu Q, Liu S, Li H, et al. Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: a variability and diagnostic performance study. Ophthalmology. 2009;116(7):1257-63. e2.
Wu H, de Boer JF, Chen TC. Reproducibility of retinal nerve fiber layer thickness measurements using spectral domain optical coherence tomography. Journal of glaucoma. 2011;20(8):470.
Boden C, Sample PA, Boehm AG, Vasile C, Akinepalli R, Weinreb RN. The structure-function relationship in eyes with glaucomatous visual field loss that crosses the horizontal meridian. Archives of Ophthalmology. 2002;120(7):907-12.
HEIJL A, LUNDQVIST L. The frequency distribution of earliest glaucomatous visual field defects documented by automatic perimetry. Acta ophthalmologica. 1984;62(4):658-64.
Cho H-K, Kee C. Comparison of the progression rates of the superior, inferior, and both hemifield defects in normal-tension glaucoma patients. American journal of ophthalmology. 2012;154(6):958-68. e1.
Leung CK-S, Yu M, Weinreb RN, Lai G, Xu G, Lam DS-C. Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: patterns of retinal nerve fiber layer progression. Ophthalmology. 2012;119(9):1858-66.
Kim C-S, Shin K-S, Lee H-J, Jo Y-J, Kim J-Y. Sectoral retinal nerve fiber layer thinning in branch retinal vein occlusion. Retina. 2014;34(3):525-30.
Kim MJ, Woo SJ, Park KH, Kim T-W. Retinal nerve fiber layer thickness is decreased in the fellow eyes of patients with unilateral retinal vein occlusion. Ophthalmology. 2011;118(4):706-10.
Hwang DJ, Lee EJ, Lee SY, Park KH, Woo SJ. Effect of diabetic macular edema on peripapillary retinal nerve fiber layer thickness profiles. Investigative ophthalmology & visual science. 2014;55(7):4213-9.
Lee SB, Kwag JY, Lee HJ, Jo YJ, Kim JY. The longitudinal changes of retinal nerve fiber layer thickness after panretinal photocoagulation in diabetic retinopathy patients. Retina. 2013;33(1):188-93.
Kim JJ, Im JC, Shin JP, Kim IT, Park DH. One-year follow-up of macular ganglion cell layer and peripapillary retinal nerve fibre layer thickness changes after panretinal photocoagulation. British Journal of Ophthalmology. 2014;98(2):213-7.
Kim KY, Yu S-Y, Kim MS, Kim ES, Kwak HW. Changes of parafoveal retinal nerve fiber layer thickness analyzed by spectral-domain optical coherence tomography after pars plana vitrectomy. Retina. 2013;33(4):776-84.
Lee Y-H, Lee J-E, Shin Y-I, Lee K-M, Jo Y-J, Kim J-Y. Longitudinal changes in retinal nerve fiber layer thickness after vitrectomy for rhegmatogenous retinal detachment. Investigative Ophthalmology & Visual Science. 2012;53(9):5471-4.
Burgoyne CF. A biomechanical paradigm for axonal insult within the optic nerve head in aging and glaucoma. Experimental eye research. 2011;93(2):120-32.
Anderson DR. Ultrastructure of human and monkey lamina cribrosa and optic nerve head. Archives of Ophthalmology. 1969;82(6):800-14.
Quigley H, Anderson DR. The dynamics and location of axonal transport blockade by acute intraocular pressure elevation in primate optic nerve. Investigative ophthalmology & visual science. 1976;15(8):606-16.
Quigley HA, Addicks EM, Green WR, Maumenee A. Optic nerve damage in human glaucoma: II. The site of injury and susceptibility to damage. Archives of ophthalmology. 1981;99(4):635-49.
Lee SH, Yu D-A, Kim T-W, Lee EJ, Girard MJ, Mari JM. Reduction of the lamina cribrosa curvature after trabeculectomy in glaucoma. Investigative ophthalmology & visual science. 2016;57(11):5006-14.
Lee SH, Kim T-W, Lee EJ, Girard MJ, Mari JM. Diagnostic power of lamina cribrosa depth and curvature in glaucoma. Investigative ophthalmology & visual science. 2017;58(2):755-62.
Furlanetto RL, Park SC, Damle UJ, Sieminski SF, Kung Y, Siegal N, et al. Posterior displacement of the lamina cribrosa in glaucoma: in vivo interindividual and intereye comparisons. Investigative ophthalmology & visual science. 2013;54(7):4836-42.
Wang B, Nevins JE, Nadler Z, Wollstein G, Ishikawa H, Bilonick RA, et al. In vivo lamina cribrosa micro-architecture in healthy and glaucomatous eyes as assessed by optical coherence tomography. Investigative ophthalmology & visual science. 2013;54(13):8270-4.
Akkaya S, Küçük B, Doğan HK, Can E. Evaluation of the lamina cribrosa in patients with diabetes mellitus using enhanced depth imaging spectral-domain optical coherence tomography. Diabetes and Vascular Disease Research. 2018;15(5):442-8.
You JY, Park SC, Su D, Teng CC, Liebmann JM, Ritch R. Focal lamina cribrosa defects associated with glaucomatous rim thinning and acquired pits. JAMA ophthalmology. 2013;131(3):314-20.
Kiumehr S, Park SC, Dorairaj S, Teng CC, Tello C, Liebmann JM, et al. In vivo evaluation of focal lamina cribrosa defects in glaucoma. Archives of ophthalmology. 2012;130(5):552-9.
Ohno-Matsui K, Hirakata A, Inoue M, Akiba M, Ishibashi T. Evaluation of congenital optic disc pits and optic disc colobomas by swept-source optical coherence tomography. Investigative Ophthalmology & Visual Science. 2013;54(12):7769-78.
Tatham AJ, Miki A, Weinreb RN, Zangwill LM, Medeiros FA. Defects of the lamina cribrosa in eyes with localized retinal nerve fiber layer loss. Ophthalmology. 2014;121(1):110-8.
AIRAKSINEN PJ, MUSTONEN E, ALANKO HI. Optic disc haemorrhages precede retinal nerve fibre layer defects in ocular hypertension. Acta ophthalmologica. 1981;59(5):627-41.
Abe RY, Gracitelli CP, Diniz-Filho A, Tatham AJ, Medeiros FA. Lamina cribrosa in glaucoma: diagnosis and monitoring. Current ophthalmology reports. 2015;3(2):74-84.
Hermann B, Fernández E, Unterhuber A, Sattmann H, Fercher A, Drexler W, et al. Adaptive-optics ultrahigh-resolution optical coherence tomography. Optics letters. 2004;29(18):2142-4.
Zhang Y, Rha J, Jonnal RS, Miller DT. Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina. Optics Express. 2005;13(12):4792-811.
Lee EJ, Kim T-W, Kim M, Girard MJ, Mari JM, Weinreb RN. Recent structural alteration of the peripheral lamina cribrosa near the location of disc hemorrhage in glaucoma. Investigative ophthalmology & visual science. 2014;55(4):2805-15.
Somfai GM, Salinas HM, Puliafito CA, Fernandez DC. Evaluation of potential image acquisition pitfalls during optical coherence tomography and their influence on retinal image segmentation. Journal of Biomedical Optics. 2007;12(4):041209.
Ishikawa H, Stein DM, Wollstein G, Beaton S, Fujimoto JG, Schuman JS. Macular segmentation with optical coherence tomography. Investigative ophthalmology & visual science. 2005;46(6):2012-7.
Greenfield DS, Bagga H, Knighton RW. Macular thickness changes in glaucomatous optic neuropathy detected using optical coherence tomography. Archives of Ophthalmology. 2003;121(1):41-6.
Zeimer R, Asrani S, Zou S, Quigley H, Jampel H. Quantitative detection of glaucomatous damage at the posterior pole by retinal thickness mapping: a pilot study. Ophthalmology. 1998;105(2):224-31.
Ojima T, Tanabe T, Hangai M, Yu S, Morishita S, Yoshimura N. Measurement of retinal nerve fiber layer thickness and macular volume for glaucoma detection using optical coherence tomography. Japanese journal of ophthalmology. 2007;51(3):197-203.
Leung CK, Chan W-M, Yung W-H, Ng AC, Woo J, Tsang M-K, et al. Comparison of macular and peripapillary measurements for the detection of glaucoma: an optical coherence tomography study. Ophthalmology. 2005;112(3):391-400.
Curcio CA, Allen KA. Topography of ganglion cells in human retina. Journal of comparative Neurology. 1990;300(1):5-25.
Tan O, Chopra V, Lu AT-H, Schuman JS, Ishikawa H, Wollstein G, et al. Detection of macular ganglion cell loss in glaucoma by Fourier-domain optical coherence tomography. Ophthalmology. 2009;116(12):2305-14. e2.
Hoyt WF, Frisen L, Newman NM. Fundoscopy of nerve fiber layer defects in glaucoma. Investigative ophthalmology & visual science. 1973;12(11):814-29.
Quigley HA, Miller NR, George T. Clinical evaluation of nerve fiber layer atrophy as an indicator of glaucomatous optic nerve damage. Archives of Ophthalmology. 1980;98(9):1564-71.
Airaksinen PJ, Drance SM, Douglas GR, Mawson DK, Nieminen H. Diffuse and localized nerve fiber loss in glaucoma. American journal of ophthalmology. 1984;98(5):566-71.
Harwerth RS, Carter-Dawson L, Shen F, Smith EL, Crawford M. Ganglion cell losses underlying visual field defects from experimental glaucoma. Investigative ophthalmology & visual science. 1999;40(10):2242-50.
Seong M, Sung KR, Choi EH, Kang SY, Cho JW, Um TW, et al. Macular and peripapillary retinal nerve fiber layer measurements by spectral domain optical coherence tomography in normal-tension glaucoma. Investigative ophthalmology & visual science. 2010;51(3):1446-52.
Lorenzo MM, Devlin J, Saini C, Cho K-S, Paschalis EI, Chen DF, et al. The Prevalence of Autoimmune Diseases in Patients with Primary Open-Angle Glaucoma Undergoing Ophthalmic Surgeries. Ophthalmology Glaucoma. 2022;5(2):128-36.
Bowd C, Zangwill LM, Weinreb RN, Medeiros FA, Belghith A. Estimating optical coherence tomography structural measurement floors to improve detection of progression in advanced glaucoma. American journal of ophthalmology. 2017;175:37-44.
Artes PH, Iwase A, Ohno Y, Kitazawa Y, Chauhan BC. Properties of perimetric threshold estimates from Full Threshold, SITA Standard, and SITA Fast strategies. Investigative ophthalmology & visual science. 2002;43(8):2654-9.
Wall M, Woodward KR, Doyle CK, Artes PH. Repeatability of automated perimetry: a comparison between standard automated perimetry with stimulus size III and V, matrix, and motion perimetry. Investigative ophthalmology & visual science. 2009;50(2):974-9.
Hood DC, Slobodnick A, Raza AS, de Moraes CG, Teng CC, Ritch R. Early glaucoma involves both deep local, and shallow widespread, retinal nerve fiber damage of the macular region. Investigative ophthalmology & visual science. 2014;55(2):632-49.
Hood DC, Raza AS, de Moraes CGV, Liebmann JM, Ritch R. Glaucomatous damage of the macula. Progress in retinal and eye research. 2013;32:1-21.
Mwanza J-C, Oakley JD, Budenz DL, Chang RT, O'Rese JK, Feuer WJ. Macular ganglion cell–inner plexiform layer: automated detection and thickness reproducibility with spectral domain–optical coherence tomography in glaucoma. Investigative ophthalmology & visual science. 2011;52(11):8323-9.
Asrani S, Rosdahl JA, Allingham RR. Novel software strategy for glaucoma diagnosis: asymmetry analysis of retinal thickness. Archives of ophthalmology. 2011;129(9):1205-11.
Seo JH, Kim T-W, Weinreb RN, Park KH, Kim SH, Kim DM. Detection of localized retinal nerve fiber layer defects with posterior pole asymmetry analysis of spectral domain optical coherence tomography. Investigative Ophthalmology & Visual Science. 2012;53(8):4347-53.
Leung CK-S. Diagnosing glaucoma progression with optical coherence tomography. Current opinion in ophthalmology. 2014;25(2):104-11.
Tan O, Li G, Lu AT-H, Varma R, Huang D, Group AIfGS. Mapping of macular substructures with optical coherence tomography for glaucoma diagnosis. Ophthalmology. 2008;115(6):949-56.
Hood DC, Raza AS, de Moraes CGV, Johnson CA, Liebmann JM, Ritch R. The nature of macular damage in glaucoma as revealed by averaging optical coherence tomography data. Translational vision science & technology. 2012;1(1):3-.
Kotera Y, Hangai M, Hirose F, Mori S, Yoshimura N. Three-dimensional imaging of macular inner structures in glaucoma by using spectral-domain optical coherence tomography. Investigative ophthalmology & visual science. 2011;52(3):1412-21.
Leung CK, Ye C, Weinreb RN, Yu M, Lai G, Lam DS. Impact of age-related change of retinal nerve fiber layer and macular thicknesses on evaluation of glaucoma progression. Ophthalmology. 2013;120(12):2485-92.
Lee ES, Kang SY, Choi EH, Kim JH, Kim NR, Seong GJ, et al. Comparisons of nerve fiber layer thickness measurements between Stratus, Cirrus, and RTVue OCTs in healthy and glaucomatous eyes. Optometry and Vision Science. 2011;88(6):751-8.
Seibold LK, Mandava N, Kahook MY. Comparison of retinal nerve fiber layer thickness in normal eyes using time-domain and spectral-domain optical coherence tomography. American journal of ophthalmology. 2010;150(6):807-14. e1.
Leung CK-s, Cheung CYL, Weinreb RN, Qiu K, Liu S, Li H, et al. Evaluation of retinal nerve fiber layer progression in glaucoma: a study on optical coherence tomography guided progression analysis. Investigative ophthalmology & visual science. 2010;51(1):217-22.
Kim JS, Ishikawa H, Gabriele ML, Wollstein G, Bilonick RA, Kagemann L, et al. Retinal nerve fiber layer thickness measurement comparability between time domain optical coherence tomography (OCT) and spectral domain OCT. Investigative Ophthalmology & Visual Science. 2010;51(2):896-902.
Johnson DE, El-Defrawy SR, Almeida DR, Campbell RJ. Comparison of retinal nerve fibre layer measurements from time domain and spectral domain optical coherence tomography systems. Canadian Journal of Ophthalmology. 2009;44(5):562-6.
Strouthidis NG, Grimm J, Williams GA, Cull GA, Wilson DJ, Burgoyne CF. A comparison of optic nerve head morphology viewed by spectral domain optical coherence tomography and by serial histology. Investigative ophthalmology & visual science. 2010;51(3):1464-74.
He L, Ren R, Yang H, Hardin C, Reyes L, Reynaud J, et al. Anatomic vs. acquired image frame discordance in spectral domain optical coherence tomography minimum rim measurements. PloS one. 2014;9(3):e92225.
Valverde-Megías A, Martinez-de-la-Casa JM, Serrador-García M, Larrosa JM, García-Feijoó J. Clinical relevance of foveal location on retinal nerve fiber layer thickness using the new FoDi software in spectralis optical coherence tomography. Investigative Ophthalmology & Visual Science. 2013;54(8):5771-6.
Jansonius NM, Nevalainen J, Selig B, Zangwill L, Sample P, Budde W, et al. A mathematical description of nerve fiber bundle trajectories and their variability in the human retina. Vision research. 2009;49(17):2157-63.
Garway-Heath DF, Poinoosawmy D, Fitzke FW, Hitchings RA. Mapping the visual field to the optic disc in normal tension glaucoma eyes. Ophthalmology. 2000;107(10):1809-15.
Tatham AJ, Medeiros FA. Detecting structural progression in glaucoma with optical coherence tomography. Ophthalmology. 2017;124(12):S57-S65.
Park K, Kim J, Lee J. Reproducibility of Bruch membrane opening-minimum rim width measurements with spectral domain optical coherence tomography. Journal of glaucoma. 2017;26(11):1041-50.
Gietzelt C, von Goscinski C, Lemke J, Schaub F, Hermann MM, Dietlein TS, et al. Dynamics of structural reversal in Bruch’s membrane opening-based morphometrics after glaucoma drainage device surgery. Graefe's Archive for Clinical and Experimental Ophthalmology. 2020;258(6):1227-36.
Shin DH, Bielik M, Hong YJ, Briggs KS, Shi DX. Reversal of glaucomatous optic disc cupping in adult patients. Archives of Ophthalmology. 1989;107(11):1599-603.
Povazay B, Hofer B, Hermann BM, Unterhuber A, Morgan JE, Glittenberg C, et al. Minimum distance mapping using three-dimensional optical coherence tomography for glaucoma diagnosis. Journal of biomedical optics. 2007;12(4):041204.
Gardiner SK, Ren R, Yang H, Fortune B, Burgoyne CF, Demirel S. A method to estimate the amount of neuroretinal rim tissue in glaucoma: comparison with current methods for measuring rim area. American journal of ophthalmology. 2014;157(3):540-9. e2.
Mizumoto K, Gosho M, Zako M. Correlation between optic nerve head structural parameters and glaucomatous visual field indices. Clinical Ophthalmology (Auckland, NZ). 2014;8:1203.
Pollet-Villard F, Chiquet C, Romanet J-P, Noel C, Aptel F. Structure-function relationships with spectral-domain optical coherence tomography retinal nerve fiber layer and optic nerve head measurements. Investigative ophthalmology & visual science. 2014;55(5):2953-62.
O'rese JK, Chang RT, Feuer WJ, Budenz DL. Comparison of retinal nerve fiber layer measurements using time domain and spectral domain optical coherent tomography. Ophthalmology. 2009;116(7):1271-7.
Rao HL, Leite MT, Weinreb RN, Zangwill LM, Alencar LM, Sample PA, et al. Effect of disease severity and optic disc size on diagnostic accuracy of RTVue spectral domain optical coherence tomograph in glaucoma. Investigative ophthalmology & visual science. 2011;52(3):1290-6.
Tuo J, Shen D, Yang HH, Chan C-C. Distinct microRNA-155 expression in the vitreous of patients with primary vitreoretinal lymphoma and uveitis. American journal of ophthalmology. 2014;157(3):728-34.
Grewal DS, Tanna AP. Diagnosis of glaucoma and detection of glaucoma progression using spectral domain optical coherence tomography. Current opinion in ophthalmology. 2013;24(2):150-61.
Leite MT, Rao HL, Zangwill LM, Weinreb RN, Medeiros FA. Comparison of the diagnostic accuracies of the Spectralis, Cirrus, and RTVue optical coherence tomography devices in glaucoma. Ophthalmology. 2011;118(7):1334-9.
Yamashita T, Sakamoto T, Kakiuchi N, Tanaka M, Kii Y, Nakao K. Posterior pole asymmetry analyses of retinal thickness of upper and lower sectors and their association with peak retinal nerve fiber layer thickness in healthy young eyes. Investigative Ophthalmology & Visual Science. 2014;55(9):5673-8.
Nakano N, Hangai M, Nakanishi H, Mori S, Nukada M, Kotera Y, et al. Macular ganglion cell layer imaging in preperimetric glaucoma with speckle noise–reduced spectral domain optical coherence tomography. Ophthalmology. 2011;118(12):2414-26.
Yamada H, Hangai M, Nakano N, Takayama K, Kimura Y, Miyake M, et al. Asymmetry analysis of macular inner retinal layers for glaucoma diagnosis. American journal of ophthalmology. 2014;158(6):1318-29. e3.
Mwanza J-C, Oakley JD, Budenz DL, Anderson DR, Group COCTNDS. Ability of cirrus HD-OCT optic nerve head parameters to discriminate normal from glaucomatous eyes. Ophthalmology. 2011;118(2):241-8. e1.
Hwang YH, Jeong YC, Kim HK, Sohn YH. Macular ganglion cell analysis for early detection of glaucoma. Ophthalmology. 2014;121(8):1508-15.
Sull AC, Vuong LN, Price LL, Srinivasan VJ, Gorczynska I, Fujimoto JG, et al. Comparison of spectral/Fourier domain optical coherence tomography instruments for assessment of normal macular thickness. Retina (Philadelphia, Pa). 2010;30(2):235.
Scuderi G, Fragiotta S, Scuderi L, Iodice CM, Perdicchi A. Ganglion cell complex analysis in glaucoma patients: what can it tell us? Eye and brain. 2020;12:33.
Sinai M. Direct Ganglion Cell Assessment with the RTVue: The Ganglion Cell Complex Analysis. 2008.
Zhang C, Tatham AJ, Weinreb RN, Zangwill LM, Yang Z, Zhang JZ, et al. Relationship between ganglion cell layer thickness and estimated retinal ganglion cell counts in the glaucomatous macula. Ophthalmology. 2014;121(12):2371-9.
Mwanza J-C, Durbin MK, Budenz DL, Sayyad FE, Chang RT, Neelakantan A, et al. Glaucoma diagnostic accuracy of ganglion cell–inner plexiform layer thickness: comparison with nerve fiber layer and optic nerve head. Ophthalmology. 2012;119(6):1151-8.
Kim NR, Lee ES, Seong GJ, Kim JH, An HG, Kim CY. Structure–function relationship and diagnostic value of macular ganglion cell complex measurement using Fourier-domain OCT in glaucoma. Investigative ophthalmology & visual science. 2010;51(9):4646-51.
Mansouri K, Leite MT, Medeiros F, Leung C, Weinreb R. Assessment of rates of structural change in glaucoma using imaging technologies. Eye. 2011;25(3):269-77.
González-García AO, Vizzeri G, Bowd C, Medeiros FA, Zangwill LM, Weinreb RN. Reproducibility of RTVue retinal nerve fiber layer thickness and optic disc measurements and agreement with Stratus optical coherence tomography measurements. American journal of ophthalmology. 2009;147(6):1067-74. e1.
Sinai M. RNFL Progression Analysis with the RTVue Software version 4.0. Citeseer.
- Abstract Viewed: 53 times
- pdf Downloaded: 64 times