The Effect of Soft Contact Lenses on Optic Nerve Head Measurements Using Optical Coherence Tomography
Journal of Ophthalmic and Optometric Sciences,
Vol. 2 No. 1 (2018),
1 January 2018
,
Page 26-33
https://doi.org/10.22037/joos.v2i1.28577
Abstract
Purpose: To evaluate the effect of soft contact lens induced myopia and hyperopia on optic nerve head measurements of normal eyes using spectral domain optical coherence tomography (SD-OCT).
Methods: This cross sectional study was performed on 114 emmetropic eyes of 57 participants. Each participant underwent a complete ophthalmic examination including determination of best-corrected visual acuity, intraocular pressure, dry and cycloplegic refraction as well as axial length measurement. SD-OCT measurement was performed in all ayes while different levels of refraction strength were induced by wearing soft contact lenses of five different diopters (- 10.00, - 5.00, Plano, + 5.00, + 10.00).
Results: The mean measured thicknesses of retinal nerve fiber layer were 123.29 ± 10.56 micrometer, 123.17 ± 11.61 micrometer, 122.77 ± 11.61 micrometer, 123.37 ± 11.15 micrometer and 123.42 ± 11.45 micrometer in contact lens induced high myopia, moderate myopia, emmetropic, moderate hyperopia, and high hyperopia groups, respectively (P = 0.721). Also, corresponding evaluations for mean rim area (P = 0.781), mean optic disc area (P = 0.601), mean cup area (P = 0.53), and mean cup to disc area ratio (P = 0.414) showed no statistically significant difference.
Conclusion: Our findings indicate that refractive error variation at the corneal plane caused by contact lens wear has no significant effect on thickness of retinal nerve fiber layer, disc area, cup area, rim area and mean cup to disc area ratio measured by SD-OCT.
Keywords: Contact Lenses; Hyperopia; Myopia; Tomography, Optical Coherence; Optic Nerve
How to Cite
References
Wang XY, Huynh SC, Burlutsky G, Ip J, Stapleton F, Mitchell P. Reproducibility of and effect of magnification on optical coherence tomography measurements in children. Am J Ophthalmol. 2007;143(3):484-8.
Lowe RF. Aetiology of the anatomical basis for primary angle-closure glaucoma. Biometrical comparisons between normal eyes and eyes with primary angle-closure glaucoma. Br J Ophthalmol. 1970;54(3):161-9.
Budenz DL, Anderson DR, Varma R, Schuman J, Cantor L, Savell J, et al. Determinants of normal retinal nerve fiber layer thickness measured by Stratus OCT. Ophthalmology. 2007;114(6):1046-52.
Tariq YM, Samarawickrama C, Pai A, Burlutsky G, Mitchell P. Impact of ethnicity on the correlation of retinal parameters with axial length. Invest Ophthalmol Vis Sci. 2010;51(10):4977-82.
Pakravan M, Aramesh S, Yazdani S, Yaseri M, Sedigh-Rahimabadi M. Peripapillary retinal nerve fiber layer thickness measurement by three-dimensional optical coherence tomography in a normal population. J Ophthalmic Vis Res. 2009;4(4):220-7.
Sato A, Fukui E, Ohta K. Retinal thickness of myopic eyes determined by spectralis optical coherence tomography. Br J Ophthalmol. 2010;94(12):1624-8.
Shoji T, Sato H, Ishida M, Takeuchi M, Chihara E. Assessment of glaucomatous changes in subjects with high myopia using spectral domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2011;52(2):1098-102.
Stein DM, Wollstein G, Ishikawa H, Hertzmark E, Noecker RJ, Schuman JS. Effect of corneal drying on optical coherence tomography. Ophthalmology. 2006;113(6):985-91.
Lee J, Kim NR, Kim H, , Han J, Lee ES, Seong GJ, et al. Negative refraction power causes underestimation of peripapillary retinal nerve fibre layer thickness in spectral-domain optical coherence tomography. Br J Ophthalmol 2011;95(9):1284-9.
Sanchez-Cano A, Baraibar B, Pablo LE, Honrubia FM. Magnification characteristics of the Optical Coherence Tomograph STRATUS OCT 3000. Ophthalmic Physiol Opt. 2008;28(1):21-8.
Quigley MG, Dube P. A new fundus camera technique to help calculate eye-camera magnification: a rapid means to measure disc size. Arch Ophthalmol. 2003;121(5):707-9.
Wakitani Y, Sasoh M, Sugimoto M, Ito Y, Ido M, Uji Y. Macular thickness measurements in healthy subjects with different axial lengths using optical coherence tomography. Retina. 2003;23(2):177-82.
Leung CK, Mohamed S, Leung KS, Cheung CY, Chan SL, Cheng DK, et al. Retinal nerve fiber layer measurements in myopia: An optical coherence tomography study. Invest Ophthalmol Vis Sci. 2006;47(12):5171-6.
Patel NB, Garcia B, Harwerth RS. Influence of anterior segment power on the scan path and RNFL thickness using SD-OCT. Invest Ophthalmol Vis Sci. 2012;53(9):5788-98.
Varma R, Skaf M, Barron E. Retinal nerve fiber layer thickness in normal human eyes. Ophthalmology. 1996;103(12):2114-9.
Savini G, Zanini M, Carelli V, Sadun AA, Ross-Cisneros FN, Barboni P. Correlation between retinal nerve fibre layer thickness and optic nerve head size: an optical coherence tomography study. Br J Ophthalmol. 2005;89(4):489-92.
Gabriele ML, Ishikawa H, Wollstein G, Bilonick RA, Townsend KA, Kagemann L, et al. Optical coherence tomography scan circle location and mean retinal nerve fiber layer measurement variability. Invest Ophthalmol Vis Sci. 2008;49(6):2315-21.
Cheung CY, Yiu CK, Weinreb RN, Lin D, Li H, Yung AY, et al. Effects of scan circle displacement in optical coherence tomography retinal nerve fibre layer thickness measurement: a RNFL modelling study. Eye (Lond). 2009;23(6):1436-41.
Bhandari A, Chen PP, Mills RP. Effects of contact lenses on scanning laser polarimetry of the peripapillary retinal nerve fiber layer. Am J Ophthalmol. 1999;127(6):722-4.
Carpineto P, Ciancaglini M, Zuppardi E, Doronzo E, Stefano ND, Mastropasqua L. Effect of photorefractive keratectomy for myopia on measurement of retinal nerve fiber layer thickness using optical coherence tomography. J Refract Surg. 2001;17(6):676-81.
Rauscher FM, Sekhon N, Feuer WJ, Budenz DL. Myopia affects retinal nerve fiber layer measurements as determined by optical coherence tomography. J Glaucoma. 2009;18(7):501-5.
Parvaresh M, Imani M, B Kashkouli M, S Sanjari M. Optical Coherence Tomography-Measured Nerve Fiber Layer and Macular Thickness in Emmetropic, High-Myopic and High-Hyperopic Eyes. Iranian Journal of Ophthalmology. 2008;20(2):4-9.
Salchow DJ, Li FY, Hwang AM, Dziura J. Effect of contact lens power on optic disc parameters measured with optical coherence tomography. Curr Eye Res. 2013;38(3):381-5.
Gurses-Ozden R, Liebmann JM, Schuffner D, Buxton DF, Soloway BD, Ritch R. Retinal nerve fiber layer thickness remains unchanged following laser-assisted in situ keratomileusis. Am J Ophthalmol. 2001;132(4):512-6.
Varma R, Tielsch JM, Quigley HA, Hilton SC, Katz J, Spaeth GL, et al. Race-, age-, gender-, and refractive error-related differences in the normal optic disc. Arch Ophthalmol. 1994;112(8):1068-76.
Enrique EFS, Yatco MM, Castillo NM. Correlation of optic-disc area and refractive error. Philippine Journal of Ophthalmology. 2009;34(2):56-8.
Ramrattan RS, Wolfs RC, Jonas JB, Hofman A, de Jong PT. Determinants of optic disc characteristics in a general population: The Rotterdam Study. Ophthalmology. 1999;106(8):1588-96.
Hee MR, Puliafito CA, Duker JS, Reichel E, Coker JG, Wilkins JR, et al. Topography of diabetic macular edema with optical coherence tomography. Ophthalmology. 1998;105(2):360-70.
- Abstract Viewed: 121 times
- PDF Downloaded: 83 times