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Introduction: Fetal cells are present in maternal tissue during pregnancy as well as post-partum. Although their clinical significance is not clear,
these cells can be found in injured, diseased and normal tissue. In this study, the authors sought to assess the possibility of fetal cells’ homing in
iatrogenic maternal jawbone defects. Materials and Methods: Eight wild female mice were bred with eight male mice carrying the green

fluorescent protein (GFP). Two mice with the same specification were bred with non GFP male mice. A two-millimeter defect was created in

pregnant mice mandibles on day 12.5 of pregnancy. The mice were euthanized 4 days later. Results: GFP+cells were investigated in mandibular

defects using immunoflurescent, immunohistochemical staining, and quantitative polymerase chain reaction. GFP+cells were present at defect

margins of four cases by all evaluations. GFP+cells were absent in normal tissues and in control mice. Conclusion: Fetal cells were distinguishable

at the margin of iatrogenic jaw bone defect in the mice but their function remain to be elucidate.
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Introduction

Stem cell recruitment is a crucial step in bone healing process and
decreased mesenchymal stem cell (MSC) pool can significantly
correlate with the failure of bone regeneration (1). In this regard,
homing of MSCs and their mobilization are essential for bone
formation (2). MSCs are attracted from bone marrow, around
tissue, and circulating blood (3). Various mechanisms have been
reported to explain the homing of stem cells in the defect sites (4).
In “natural tissue engineering” fetal cells showed a precisely
homing mechanism that is not clear yet (5, 6).

Fetal cells represented a remarkable capacity to migrate
through the placenta and homing in maternal tissues especially in
injured tissues and site of disease (7, 8). Fetal cells can be found in
maternal tissue even long after pregnancy (9). However, the
clinical significance of fetal cells (microchimeric cells) has not been
ascertained yet. It has been shown that fetal cells act like stem cells
and they play a significant role in natural tissue regeneration (5, 10,

11). Khosrotehrani and Bianchi hypothesized that fetal

microchimeric stem cells may relate to damaged maternal tissues
as part of tissue repair response (12). Tissue injury can induce fetal
cells in liver, kidneys, heart and brain of maternal mice (13-16).
The role of fetal cells in “natural tissue engineering”, however, has
not been fully understood (5, 6). Cultured fetal cells harvested
from maternal bone marrow have been shown the differentiation
towards different cell lineages (17, 18). It has been assumed that
the diversity of their phenotypes and their presence within the
damaged tissue may aid the tissue healing process (19-21).

Knowledge of the migrated fetal cell type and molecular
mechanisms that permit for the migration, homing, and
multilineage differentiation potential of these cells can improve
our whole strategies for homing in bone regeneration and stem
cell-based therapies of bone defects. Moreover, this knowledge
can enhance the prospects for minimally invasive delivery of
stem cells for cytotherapeutic repair of maternal tissues. In the
current study, we hypothesized a smart homing of fetal cells in
bony defects, and we aimed to assess the presence of fetal cells in
iatrogenic maternal mandibular bone defects.
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Figure 1. Study design
Materials and Methods
Animals

This study was approved by The Institutional Animal Care
and Use Committee of the Shahid Beheshti University of
Medical
microchimerism, 10 wild type virgin C57Bl/6 female mice (6

Sciences. To investigate the fetal-maternal
to 8 weeks-old, Pastor Institute, Tehran, Iran) were bred with
8 congenic male mice (6 to 8 weeks-old, originally generated
by Osaka University, Japan) carrying an eGFP gene as test
group and 2 wild type as control group. The homozygous
transgenic mice (in C57Bl/6 background) carried an eGFP
gene, which was under the control of a chicken beta-actin

promoter and cytomegalovirus enhancer.

Surgical injury

On the 12.5 day of pregnancy of female C57Bl/6 mice (n=8),
they were anaesthetized using ketamine (80 mg/Kg); then
access to mandibular body was obtained via a delicate mucosal
incision and subperiosteal flap elevation. Surgical round burs
(Meisinger, Neuss, Germany) at a speed of 20,000 (rev/min)
were used under sufficient irrigation of normal saline to create
a round bone defect in the lower jaw. The incision was closed
with a running suture (5-0 of Vicryl, Ethicon Inc., Somerville,
NJ, USA). The same procedure was performed on two virgin
female C57BL/6] mice as negative controls.

Tissue collection

Mice were euthanized by chloroform inhalation 4 days after
surgery. One GFP+male mouse was also involved in the study
as a positive control. Their mandible bones were separated
from the surrounding soft tissues and fixed in 10%
formaldehyde.

Figure 2. A) Histological evaluation of a maternal jaw defect shows
no necrosis (H&E staining) (40x); B) Immunofluorescence staining
of GFP+cell in the jaw bone (White arrows shows the positive cells)

Histology

The specimens were decalcified in 10% nitric acid and
embedded in paraffin. Thin 5-micrometer sections of bone
specimens were stained with hematoxylin-eosin to detect
fibrosis. Sections were evaluated histologically, focusing on
general structure, amount of inflammation and presence of
steatosis or necrosis.

Immunohistochemistry and immunofluresecent staining
For immunohistochemistry, Anti-GFP rabbit polyclonal
antibody (Abcam, Cambridge, MA, USA) was used on
decalcified sections to detect fetal GFP+ cells. A HRP-
conjugated goat anti-rabbit secondary antibody (Abcam,
Cambridge, MA, USA) for DAB labeling according to
standard protocol 21 was used as a secondary antibody. The
sections were observed using a light microscope (Nikon,
Tokyo, Japan). For immunofluresecent staining, anti-GFP
[LGB-1] (FITC) (Abcam,
Cambridge, MA, USA) was used as a primary antibody and

mouse monoclonal antibody

conjugated anti-mouse IgG antibody (Abcam, Cambridge,
MA, USA) were used as a secondary antibody.

Quantitative real time-PCR (qRT-PCR) analysis

Three fresh frozen of mandibular bone specimens from each
group was stored at -70°C until upcoming assessments. The
specimens were air died at room temperature and immediately
dipped in liquid nitrogen until reached a chilly -195 °C, then
transferred into an RNAs free crucible in order to make bone
powder. Total RNA were extracted, using RNeasy Micro Kit
(QIAGEN, Valencia, CA). Then, extracted RNA were evaluated
by NanoDrop 2000c Spectrophotometer (Thermo Scientific
NanoDrop Products, Wilmington, Delaware, USA).
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Figure 3. A) GFP+ cells (brown) detected by DAB labeling throughout
the jawbone in GPF+male mouse (positive control) (40x), presence of
few cells in maternal jawbone defect by DAB labeling: B) Red arrows
show fetal GFP+cell (100x), blach arrow pointed to the boundary of
defect, whited arrow showed mice jawbone

Then, cDNA was created from 2 mg of total RNA via
Superscript II reverse transcriptase (Invitrogen). Real-time
PCR was performed using SYBR Green PCR Master Mix
(Applied Biosystems, Warrington, Cheshire, United Kingdom)
according to manufacturer’s guideline. Reaction conditions
comprised 40 denaturation cycles (15 seconds) at 95C
following one minute of amplification at 60 ‘C. Cycle threshold
(Ct) determined by Applied Biosystems 7500 Real-Time PCR
System (Thermo Fisher scientific, USA). All reactions were
performed in triplicate, and the expressions were normalized to
that of the
amplification curves for the reactions were represented by light
cycler (Roche Molecular Biochemicals LightCycler Software®,
Version 3.5). In this study we utilized the ensuing primers:
GFP-forward 5 -CATCGAGCTGAAGGGCATC-3,
GFP-reverse 5 -TGTTGTGGCGGATCTTGAAG-3".

housekeeping gene beta actin. Assessed

Results

The study design is shown in Figure 1. Seven pregnancies
occurred in test and 2 in control groups and each resulted in
production of 9-14 GFP+fetuses. All maternal mice were
generally healthy and no clinical sign of infection was observed.
A small number of inflammatory cells in loose connective
tissue, without necrosis or steatosis were detected (Figure 2A).
Immunoflurescent staining detected highly concentrated
GFP+cells in the defect site (Figure 2B).

1200 |

Mean GFP mRNA relative level
&

Control Bony Defect
Group
Figure 4. Green fluorescent protein's mRNA relative expression in the
maternal jaw defect shows significant difference compared to control (*
P<0.05 by independent t-test)

Immunohistochemical staining (IHC) showed that the fetal
cells were present in 4 out of 7 maternal bone defects. Figure 3
shows the presence of a few isolated GFP+ cells in the jawbone.
These cells were present at the defect margins and they were
mononuclear. In contrast, the bone next to the injury site showed
no evidence of GFP+cells. Also, in bone from negative control
mice, no GFP-positive cells were detected. The GFP+cells were
present throughout the tissues of the male mouse (positive
control) showing the relative reliability of IHC for detecting GFP
in bone (Figure 3B). Similarly, gRT-PCR also confirmed the
presence of GFP+cells in maternal bone defects (Figure 4).

Discussion

Bone tissue has an immense regenerative capacity; however,
healing of critical sized bone defects and non-union fractures is
still a big challenge for scientists. Bone tissue engineering
strategies for stem cell therapies have shown promising
findings for bone regeneration (22-24), but these approaches
are time and cost consuming and require special regulatory
consideration (4). This has motivated the advancement of
strategies to induce native stem cells for bone regeneration. In
this regard, several lines of evidence support fetal cells as stem
cells which responsible for micro chimerism. These cells
showed a great ability to home in a maternal host organ or
defect site during pregnancy (9) and even decades after
pregnancy (10). They also have a multi-lineage capacity and
stem cell like properties (10). Previous studies reported their
high homing capacity and their involvement in skin wound
healing and myocardium defects (25-27). To the best of
authors’ knowledge, the presence of maternal fetal cells in bone
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tissue never investigated before. The presence of fetal cells in
maternal tissues is a well-known phenomenon. The current
study evaluated the presence of fetal GFP cells in iatrogenic
jawbone defects of maternal mice. The fetal cells were present
in maternal mandibular bone defects, while fetal cells were not
observed in the normal mandibular bone as well as control
group. When an injury occurs, progenitor cells migrate
towards the defect and differentiate into mature cells and
participate in tissue regeneration (28). However; their function
in remained to be elucidated.

Since, previous studies have been shown the presence of
fetal cells maternal circulation on day 10™ post-impregnation
(29) and increase as delivery nears (day 18") (30). In current
study, mandibular bone defect were created on the 12.5 day of
pregnancy. Furthermore, by combining three detection
methods, fluorescent microscopy, immunohistochemistry, and
quantitative RT-PCR, we decreased the possibility of false
positive detection in this study.

Fetal cells have been shown to pass the placenta and settle
in maternal bone marrow (31, 32). Male cells have been
detected in normal rib sections of women impregnated with
males throughout life (31). In our experiment, however, no
fetal cell was found in healthy mandibular bone. Cortical
density of the mandible may be considered an inhibitory factor
for fetal cells migration, whilst the surgical trauma to the
mandible triggered fetal cells to migrate to the defect site.

Low amounts of detected GFP+cells (4 out of 7) in
histological specimens may be due to heterogeneous
distribution of fetal cells throughout the defect. Other studies
also revealed that fetal cells were only detectable in some of the
mothers during pregnancy or post-partum (33, 34).

The fetal GFP+cells at maternal bone defect were
mononuclear. These cells were not perivascular and not like
polymorphonuclear hematopoietic cells. Moreover, these cells
were found along the margins of the lesion in row with other
well-polarized cells. Considering the morphology and position
of GFP+ cells in maternal bony defects, it is possible that these
cells may have differentiated into osteoblasts and participated
in regeneration of the defect by providing a reservoir of stem
cells that can have effective role in bone regeneration (35-40).

The existence of fetal cells in maternal bone defects may
change the interpretation of the cause, progression, and
treatment of the bony lesions during pregnancy or maternal
life. The effectiveness of fetal cells in improving bone healing
may provide new insight in reconstruction and warrants
further study.

Conclusion

The results revealed that fetal cells migrate through placenta and
lodge in the margins of iatrogenic defects in the body of the
lower jaw in pregnant C57Bl/6 mice. No GFP+ fetal cells were
detected in normal mandibles and control groups. However, the
type of fetal cells as well as their function is still unclear. Our
findings open a new perspective in the future of the translational
medicine of bone engineering that can stimulate fetal cell
homing as osteoprogenitor cells in order to facilitate treatment of
maternal large bony defects.
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