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High-cell density culture is based on the chondrogenic differentiation of human mesenchymal stem cells (hMSCs), and because the high density of 

cell and reduced oxygen tension are effective in chondrogenic differentiation. In the present paper, there will be a review about the methods of 

chondrogenic differentiation of hMSCs that utilized in in vitro and in vivo chondrogenic differentiation of stem cells for treatment of osteoarthritis. 

There are three High-cell density culture systems; micromass, pellet culture, and alginate culture have been used to induce chondrogenic 

differentiation of hMSCs. Transplanted naive MSCs can cause problems such as heterogeneous populations. To overcome this problem, new 

strategies for inducing differentiation of MSCs are needed. One possibility is a cell culture system. Collagen II and aggrecan are critical protein in 

chondrogenic differentiation. In all different methods, real time RT-PCR analysis demonstrates that collagen II and aggrecan mRNA are up 

regulated while collagen X and collagen I mRNA are down regulated. So these three high-density cell culture systems have been approved for 

chondrogenic differentiation. On the other hand, In micromass method, the induced-cartilage tissues are larger, more homogenous and rich in 

cartilage specific collagen II, but collagen I, collagen X and hypertrophic chondrocyte features are markedly decreased compared to other culture 

system. Thus, the micromass culture system is the best tool for in vitro chondrogenic differentiation studies. 
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Introduction 

Osteoarthritis (OA) is a progressive, chronic and irreversible 

degenerative joint disease. Conventional osteoarthritis treatments 

often lead to significant complications, such as pain and limited 

activity. Transplantation of mesenchymal stem cells (MSCs) has 

several beneficial effects such as paracrine effects, anti-

inflammatory activity and immunomodulatory capacity. 

Transplantation of MSCs is also a suggested therapeutic approach 

for osteoarthritis treatment (1). 

Human MSCs are a promising alternative cell source for 

cartilage regeneration (2). Recently, MSCs have been applied for 

treatment of OA in clinical trials (3). MSCs are easily found in 

various tissues, including bone marrow, adipose tissue, spleen, 

synovial fluid, and lungs. These cells can differentiate into several 

cell types including adipocytes, chondrocytes, cardiomyocytes, 

endothelial cells and osteocytes (3, 4). Several studies suggested 

that therapeutic effects for treatment of OA were showed by 

transplantation of chondrogenic differentiated MSCs (5, 6). Thus, 

differentiation of MSCs into specific chondrogenic cells via their 

modulation for transplant has the potential for treatment of OA 

(Figure 1) (7). Although, MSCs have several beneficial effects, but 

there are three essential factors for considering in using 

undifferentiated cells (7): efficiency of direct differentiation of 

stem cells into specific cell types (8); the survival rate of 

transplanted cells (9); and host environment when the cells are 

transplanted because not all differentiated pathways have been 

discovered yet (10, 11).  
These approaches have limitations (7): undefined conditions 

leading to heterogeneous populations of cells (8), and  unexpected 
risk of virus-mediated genetic modifications (10). To overcome 
this issue, new strategies for inducing differentiation of MSCs are 
required. One possibility is a cell culture system. Several cell 

culture methods have been developed to create suitable 
environments for chondrogenic differentiation of MSCs, 
including monolayer culture, high-density cell culture 
(micromass culture, pellet culture, and alginate culture), hanging  
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Figure 1. Models of MSC differentiation. (A) In this theoretical model, MSCs in the bone marrow constitute a primitive stem cell population 

(multipotent MSCs), having the potential for self-renewal and proliferation as well as the capacity to differentiate into all connective tissue cell 

types, when exposed to a defined environment. (B) An alternative model illustrating MSCs in vivo as a population of cells with different 

differentiation potentials (i.e., quadra-, tri-, bi- and uni-potential). During in vitro culture, this heterogeneous mixture of stem and committed 

progenitor cells is limited in his multilineage differentiation [7]. Permissions obtained from the publisher 

 

drop and biomaterial-based scaffold culture. In the present 

review, high cell-density culture methods in the chondrogenic 

differentiation of human MSCs will be discussed. 

One of these methods is alginate culture. Alginate beads 

are considered as a classic method for culturing 

chondrocytes. The original method of chondrocyte culture in 

the alginate beads was developed in the late eighties by Guo 

et al. (12) and was then employed and improved by other 

researchers. Chondrocytes are released from cartilage matrix. 

Beads are easy to handle and biological applications are 

compatible with this model of culture (13). Culture in 

alginate beads is also useful to re-differentiate chondrocytes 

that have dedifferentiated because of expansion in 

bidimensional culture (14).  

Morphology of the three-dimensional (3D) constructs 

varies depending on whether the culture is a solid suspension 

such as alginate or agarose, where the MSCs form small groups 

and clusters interspersed throughout the support, or a the cells 

are condensed such as various sized pellet cultures that cells are 

more tightly packed in a tissue-like structure (Figure 2). 

Pellet culture method is a standard method for the 

chondrogenesis of MSCs. This system provides a three-

dimensional environment that allows cell–cell interactions 

similar to those observed in pre-cartilage condensations 

found during embryonic development. MSCs are capable of 

chondrogenic differentiation in pellet culture using serum-

free medium containing glucocorticoids and transforming 

growth factor (TGFβ1) family (15). Therefore, pellet culture 

is widely used to evaluate the chondrogenic potential of 

MSCs and to study the signal pathways involved in 

chondrogenesis (16). Micromass culture system, first used to 

study endochondral skeletal development with embryonic 

chicken limb bud MSCs (17), has recently been applied to 

induce chondrogenesis in MSCs (18). Several studies have 

utilized micromass method for cartilage differentiation; 

because this method was designed based on generating 

cartilage from MSCs in the embryonic period. In micromass 

culture, transforming growth factor β1 (TGFβ1) treatment 

significantly increases the synthesis of the cartilage 

phenotypic markers (SOX9, COL2A1, and ACAN) and down-

regulate the catabolic (MMP13 and ADAMTS5) gene 

products in extracellular matrix (19). 

 

Applied Methodology 

Bone marrow harvest, cell isolation and expansion 

In most studies, bone marrow samples were obtained from 

healthy volunteers and MSCs were isolated and purified by 

density gradient centrifugation combined with an attachment 

culture method (20, 21). Briefly, the bone marrow samples 

(8–10 ml) are diluted with 20 ml phosphate-buffered saline 

(PBS), then the cells fractionated on a Lymphoprep density 

gradient by centrifugation at 500g for 20 minutes. The 

interfacial mononuclear cells are collected and washed with 

low-glucose. 
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Figure 2. Photomicrographs of MSC 3D cultures collected at 28 days and stained with hematoxylin and eosin. (A, B) FA, (C, D) alginate, (E, F) 

2.5 · 105 pellet, (G, H) 5 · 105 pellet, and (I, J) agarose. 200 · magnification. Images were taken at 100 · magnification. Black box represents area for 

magnified image adjacent to original. Scale bar = 200 mm [14]. Permissions obtained from the publisher 

 
Dulbecco’s modified Eagle medium (LG-DMEM) 

supplemented with 10% (v/v) FBS. The MSC primary cultures 

are seeded at a density of 106/cm2 in LG-DMEM with 10% FBS 

in 25 cm2 flasks. The cells are incubated at 37°C under 5% CO2.  

Non-adherent cells are removed from the flasks after 48 h by 

changing the medium. Thereafter, the medium is changed 

every 3 days. Typically, cultures reach 80–90% confluency in 

day 14. In this stage, cells are trypsinized from the culture 

dishes using 0.25% trypsin containing 0.53 mM EDTA, 

counted and plated again. Cells from the 3rd passage are 

usually used for experiments. In the first passage (P0), cells 

show the typical fibroblast-like morphology of primary MSCs. 

During culture expansion up to P3, cells are slightly flattened 

but still have fibroblast-like morphology. In P3, MSC 

verification is performed by flow cytometry analysis from 

surface marker profile. As expected, MSC are uniformly positive 

for CD44, CD73, CD90, CD105, and CD166 and negative for the 

hematopoietic markers CD14, CD34, and CD45. Several studies 

have shown the multilineage differentiation potential of MSCs 

while here we are only focusing on their chondrogenic 

differentiation potential (Figure 3). 

Chondrogenic differentiation of MScs by High density 

cell culture methods  

Alginate culture 

In alginate culture method MSCs or chondrocytes are released from 

cartilage by collagenase/dispase digestion. Then, they are mixed 

with a solution of 1.25% of alginic acid to obtain homogenous 

suspension. The suspension is drawn into a syringe and push gently 

through a needle, so that drops fall into a solution of calcium 

chloride. Beads form instantaneously and further polymerize after 

5 min in the calcium chloride solution. MSCs or chondrocytes from 

any species, including human OA chondrocytes, can be cultured by 

using this technique (22). Encapsulated chondrocytes are still able 

to respond to growth factors and cytokines (23). Under these 

conditions, chondrocytes maintain a high degree of differentiation. 

Beads can be dissolved by chelation of calcium with EDTA. Almost 

all molecular and biochemical techniques, as well as a number of 

biological assays, are compatible with the culture of chondrocytes 

in alginate (22, 23). 

Alginate beads are 3D scaffolds that closely resemble the 

cartilage matrix (24). In many studies, changings in chondrogenic 

genes were characterized and developed a stage for in vitro 
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Figure 3. (A) During isolation, human bone marrow mesenchymal stem cells (MSCs) appear as single cells in passage 0 (P0), (B) then they 

showed uniform growth and fibroblast like morphology in P3. (C) On FACS analysis the cells were positive for typical MSC antigens like CD166, 

CD105, CD90, CD73, and CD44, while negative for hematopoietic lineage-specific antigens like CD45, CD34, and CD14. Bar: 500 lm. [21]. 

Permissions obtained from the publisher 

 
chondrogenic differentiation of human MSCs in 3D alginate gels. 

A time-dependent accumulation of glycosaminoglycans, 

aggrecan, and type II collagen is observed in chondrogenic but not 

in basal constructs over 24 days. In qRT-PCR, a largely 

characteristic pattern of chondrogenic markers is demonstrated, 

that provide a basis for staging the cellular phenotype into four 

stages. Stage I (days 0–6) is defined by collagen types I and VI, Sox 

4, and BMP-2 showing peak expression levels. In stage II (days 6–

12), gene expression of cartilage oligomeric matrix protein, 

HAPLN1, collagen type XI, and Sox 9 reaches the peak levels, 

while gene expression of matrilin 3, Ihh, Homeobox 7, 

chondroadherin, and WNT 11 is peaked at stage III (days 12–18). 

Finally, cells in stage IV (days 18–24) demonstrate peak levels of 

aggrecan; collagen IX, II, and X; osteocalcin; fibromodulin; 

PTHrP; and alkaline phosphatase. Gene profiles at stages III and 

IV are analogous to those in juvenile articular and adult nucleus 

pulposus chondrocytes. These data provide comprehensive 

insights on chondrogenesis of human MSCs in 3D gels (25).  

In another study, the differentiation of human MSCs was 

considered into chondrocytes under defined conditions in 3D 

alginate gels in vitro as one of the high-cell density culture, and 

also, that temporal change in gene expression in this system 

largely paralleled the spatial pattern of in vivo cartilage maturation 

in many important aspects (25).  

Specifically, the early gene expression profiles are similar to 

that in precursor cells, with the cells showing progressive increase 

in markers of chondroprogenitors followed by that of mature 

chondrocytes and then by hypertrophic chondrocytes defined by 

robust upregulation of collagen type X, alkaline phosphatase, and 

osteocalcin (25, 26).  
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These stage-specific gene profiles show similarities at the 

earlier time point to those in fibroblast-like annulus fibrosus 

cells and in the later stages to juvenile chondrocytes and adult 

nucleus pulposus chondrocytic cells. The findings also provide 

insights into the stage-specific gene profiles of human MSCs 

undergoing chondrogenic differentiation in vitro that may be 

a useful to study differences in human MSC responses to 

various stimuli, such as mechanical load (27).  

Biomaterial-based scaffolds extensively have been used in 

the field of tissue engineering. They may be better than 

micromass culture systems and pellet culture systems in the 

control of diffusion of nutrients and oxygen tension, because, 

scaffold properties such as material biocompatibility, porosity, 

mechanical strength, and incorporation of signaling molecules 

can be optimized to address various physiological requirements 

of an engineered cartilage tissue (28). Additionally, biomaterial-

based scaffold cultures can provide a larger size cartilage tissue 

with stronger mechanical properties comparing to micromass 

culture systems and pellet culture systems (28). 

Pellet culture system  

In this method MSCs are centrifuged (150 g, 5 min) in a 15-mL 

polypropylene tube to form a pellet for chondrogenic 

differentiation in the high-cell density pellet cultures. The pellets 

are treated for 28 days with defined serum-free chondrogenic 

medium, which consist of DMEM (4.5 g/L glucose), ITS + 1 

supplement, 100 mM dexamethasone, 0.17 mM L-ascorbic acid-

2-phosphate, 1mM sodium pyruvate, 0.35mM L-prolin and 10 

ng/mL TGFβ3. Control pellets are cultured in the same medium 

without TGFβ3. The medium is changed every 3 days and pellets 

are harvested on days 7, 14 and 21 (21).  

MSC are stimulated with TGFβ3 in the standard pellet 

culture assay for chondrogenic differentiation. After initial 

centrifugation in 15 mL polypropylene tubes, MSCs settle and 

form loose and spherical pellets. During the first week, pellets 

start to increase in size and have a thinner central zone as 

compared to a thicker circumferential border. After 28 days, 

pellets are converted into firm, mechanically strong cultures. At 

that point, alcian blue staining of cartilage proteoglycans and 

antibody staining of cartilage-specific collagen type II reveal the 

formation of a cartilaginous extracellular matrix (ECM). Both 

alcian blue and collagen type II staining are negative in 

unstimulated pellet cultures. On the gene expression level, 

chondrogenesis is measured by significantly increased 

expression of the cartilage marker genes SOX9 and COL2A1 

from day 0 to day 28. Both genes are also much more expressed 

in stimulated cultures than in unstimulated cultures (21). 

The 3D high-cell density pellet culture is the standard assay 

for chondrogenesis in vitro. Spherical MSCs pellet is 

chondrogenically induced by the addition of the standard 

stimulus, TGFβ, leading to a firm, spherical MSC pellet 

resembling hyaline cartilage and consisting of differentiated 

MSC and their ECM. The ECM mostly consists of different 

proteoglycans and collagens, which are usually cross-linked 

and provide a protective cage in which the TGFβ-stimulated 

MSCs are entrapped. So, the isolation of these cells from their 

ECM is a challenging task, but is the prerequisite to deliver 

viable, chondrogenically differentiated MSCs (21).  

In one study, Mujib Ullah and et al. designed a protocol for 

isolation of chondrogenic differentiated human MSCs from 

high-cell density pellet cultures. First, MSC were stimulated with 

TGFβ3 for 28 days to generate high-density pellet cultures. The 

chondrogenic nature of these pellets was verified by 

histochemical examination of cartilage proteoglycan, antibody 

staining of cartilage collagen type II, and qPCR of COL2A1 and 

SOX9. Then, to start pellet digestion, trypsin was applied 

because it is broadly accepted as the enzyme for release of cells 

from culture surfaces and diverse native tissues. Initially trypsin 

did not release any cells from intact whole pellets, and very few 

cells were released from small pieces of knife-scraped pellets. In 

line with these results, trypsin was previously found to be 

insufficient to isolate chondrocytes from cartilage. Since 

cartilage and chondrogenic pellet cultures contain a huge 

amount of collagen, collagenases are important digestion 

enzymes. Some studies had used a mixture of collagenase II and 

collagenase P to isolate chondrocytes from normal and 

osteoarthritic cartilage. Therefore, comparison of these two 

enzymes alone or in combination demonstrated a mixture of 

300U of collagenase II and 20U of collagenase P optimum at 90 

and 120 min of incubation for maximum release of viable cells. 

But most cells, either died in subsequent culturing or otherwise 

showed a low proliferation rate. However, the viable, 

chondrogenic cells showed different morphologies. One reason 

may be a non-uniform nutrient supply to single cells or cell 

aggregates inside high-density pellet cultures. It also seems 

possible that the chondrogenic capacity of the primary MSCs 

varied. based on cartilage proteoglycan, collagen type II 

expression and genes play a substantial role in providing 

purified chondrogenic cells and ECM for future regenerative 

application (21). 

In this context the high-cell density pellet culture represents 

a model system to provide a large amount of chondrogenic 

MSCs, especially when such cells should be applied as a 

suspension for regenerative application (15). However, inside 

the intact pellet culture, the cells and their secreted ECM 

components enclose and fix each other, hindering the release of 

chondrogenic MSCs (29, 30). This emphasizes the need for a 

successful protocol to isolate cells from pellets, despite an array 

of published protocols for chondrocyte isolation from native 

cartilage. Unfortunately, such protocols are not applicable to 
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isolating viable cells from pellets, and we believe that appropriate 

pellet digestion represented the key step to achieve this protocol, 

but to our knowledge, no successful procedure for the isolation 

of such cells from pellets has been published (31, 32). 

Micromass culture system 

In typical cell therapy strategies, the implanted cells are 

terminally differentiated cells that are intrinsic to the healing 

site. Therefore, one important step in preparing MSCs for 

clinical use is providing the condition in which the cells can 

differentiate into mature cartilage before being implanted. This 

will guarantee the transplantation of only chondrocytes and 

therefore avoid the undesirable bone formation in the case of 

undifferentiated cell implantation. The micromass culture 

system is the routine in vitro preparation for MSCs to undergo 

cartilage differentiation; in this system, the cells are cultivated as 

a condensed aggregate. Manning et al. first described it for 

cultivation of human articular chondrocyte (33). Johnstone et al. 

later reported the differentiation of MSCs into cartilage in this 

system (34). Numerous investigations have already shown the 

effectiveness of micromass culture system for cartilage 

differentiation of MSCs from human and a variety of species (35, 

36). In this technique, MSCs are first condensed into a pellet and 

then exposed to chondrogenic medium for three weeks. Using 

micromass culture system, MSCs could easily differentiate into 

cartilage with the characteristic metachromatic matrix 

accumulated among the cells. Morphologic events have already 

been investigated during in vitro chondrogenesis using the 

micromass culture system (37), but the exact final structural 

differentiation of MSCs into cartilage tissue, the subject of the 

present study, has not yet been reported. Such investigations 

would help to understand the potentials of micromass culture 

system in producing fully-matured cartilage tissue that is 

suitable for transplantation purposes.  

A micromass culture system of primary immature 

chondrocytes for functional analysis of soluble factors involved 

in the maturation step of cartilage was developed. For 

micromass cultures, the protocol was described by De Bari et 

al. Briefly, confluent monolayer cultures of chondrocyte cell 

lines are released by trypsin-EDTA, are tested for viability by 

trypan blue exclusion, and re-suspended in growth medium at 

a density of 2.5 × 107 viable cells/mL. Micromasses are obtained 

by pipetting 20 μL of cell suspension into individual wells of 

24-well plates. Following a 3-h attachment period without 

medium, the growth medium is gently added and cultures left 

resting for a further 24 h. The medium is then changed to 

serum-free and phenol red-free medium (Gibco BRL) for 24 h. 

Differentiation is promoted by serum starvation and ITS 

supplementation. On day 3 of the culture, fresh differentiation 

medium is added. After 48 h, some of the micromasses are 

harvested for Alcian blue matrix staining and others for qRT-

PCR gene expression analysis of gene markers for 

chondrocytes: type II collagen alpha-1 (COL2A1), aggrecan 

(ACAN), sex determining region (SRY)-box 9 (SOX9), matrix 

metalloproteinase-1 and -13 (MMP1, MMP13), and a 

disintegrin and metalloproteinase with a thrombospondin type 

1 motif 5 (ADAMTS5) (19).  

Since the introduction of micromass culture system by 

Johnston et al., scientists have utilized the system for different 

purposes. Some researchers used it to study the role of 

macromolecules such as bone morphogenetic protein-6 

(BMP6) family in promoting chondrogenic differentiation (36, 

38). Others have cultivated MSCs in micromass culture system 

to investigate molecular events during in vitro chondrogenesis 

that resulte in defining the expression pattern of cartilage 

specific molecules such as collagen II, X, and aggrecan (18, 27, 

28). Still other scientists have used this culture system to 

evaluate the chondrogenic potential of the cells isolated by 

different methods (39, 40). 

Ichinso et al. (2005) cultured human MSCs in a micromass 

culture system for 21 days in order to investigate the 

morphologic changes during in vitro chondrogenesis. They 

concluded that in vitro chondrogenesis is very similar to that 

of in vivo (37).  

Differentiation Analysis 

Real-time PCR 

In reverse transcription and real-time PCR analysis total RNA 

is isolated from pellets and micromasses using Trizol_ reagent 

according to the manufacturer’s protocol. Total RNA (1 µg) is 

then converted to cDNA. All real-time qPCR are performed on 

a real-time PCR System in 20 µl reaction volumes containing 

10 µl of SYBR Green I Master Mix, 0.6 µl 10 mM sense or 

antisense primer and 7.8 µl RNAse free water. The expressions 

of the following genes are examined: collagen type I 

(COL1A1), collagen type II (COL2A1), collagen type X 

(COL10A1), aggrecan and SOX-9. Glyceraldehyde-3-

phosphate dehydrogenase (GAPDH) is used as a housekeeping 

gene. Primer sequences are listed in Table 1. The PCR reaction 

is performed for 1 min at 95°C, follow by 39 amplification 

cycles (15 s at 95°C, 15 s at 60°C, 20 s at 72°C). After the last 

cycle, a melt-curve is generated. Each PCR is processed in 

triplicate. The Ct value of GAPDH is subtracted from the Ct 

value of the interest gene (ΔCT). The average ΔCT value of the 

triplicates is taken. MSCs culture in the pellet culture system is 

used as controls (ΔΔCT). Relative expression levels for each 

primer set are expressed as fold changes by the 2- ΔΔCT method 

(41, 42). 
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Table 1. Primers used in real time RT-PCR for chondrogenic differentiation 

Gene (accession no.) Primer sequence Product size (in base pairs) 

GAPDH (NM_002046)  
5-AGAAAAACCTGCCAAATATGATGAC-3 

5-TGGGTGTCGCTGTTGAAGTC-3 
126 

Collagen X (NM_000493)  
5-CAAGGCACCATCTCCAGGAA-3 

5-AAAGGGTATTTGTGGCAGCATATT-3 
83 

Collagen I (NM_000088)  
5-CAGCCGCTTCACCTACAGC-3 

5-TTTTGTATTCAATCACTGTCTTGCC-3 
79 

Aggrecan (NM_013227.2) 
5-TGCATTCCACGAAGCTAACCTT-3 

5-GACGCCTCGCCTTCTTGAA-3 
70 

Collagen II (NM_033150)  
5-GGCAATAGCAGGTTCACGTACA-3 

5-CGATAACAGTCTTGCCCCACTT-3 
84 

SOX-9 (NM_000346) 
5-AGCGAACGCACATCAAGAC-3 

5-GCTGTAGTGTGGGAGGTTGAA-3 
110 

 
Histology and immunohistochemistry 

At specified times, cell aggregates (pellets and micromasses) are 

fixed in 4% paraformaldehyde for 3 h, and then dehydrated with 

ethanol, wash with xylene and embeded in paraffin. Sections at 

5 µM are cut and mounted on glass slides. Toluidine blue 

staining for proteoglycan and immunohistochemistry for 

collagen types I, II and X are performed. For toluidine blue 

staining, sections are deparaffinized with xylene and ethanol, 

and 1% toluidine blue sodium borate is applied for 30 min and 

wash with distilled water. For immunohistochemistry, the 

streptavidin–peroxidase-conjugated method is used. After 

deparaffinization, tissue sections are briefly treated with pepsin 

at 37°C for 10 min. The sections are then incubated for 10 min 

with a peroxidase-blocking solution and reacted with the 

appropriate primary antibodies (mouse anti-human collagen 

type II monoclonal antibody, mouse anti-human collagen type I 

monoclonal antibody, mouse monoclonal anti-human collagen 

type X antibody) diluted in PBS containing 0.2% Triton X-100 

and the appropriate 2% normal serum overnight at 4°C. After 

rinsing with PBS, the slides are incubated for 10 min at room 

temperature with biotin-conjugated secondary antibodies, 

follow by incubation with streptavidin conjugated peroxidase 

working solution for 10 min. Subsequently, sections are stained 

for 10 min with 3, 30-diaminobenzidine tetrahydrochloride 

(DAB), counter stained with Mayer’s hematoxylin, dehydrated 

and mounted. Negative controls are prepared by substituting 

PBS for the primary antibody (41, 42). 

Transmission electron microscopy (TEM) 

Day 14 cell aggregates are fixed with 2.5% glutaraldehyde in 0.1 

M PBS for 2 h. The aggregates are then washed overnight at 4°C 

in the same buffer and post-fixed with 1% OsO4 buffer with 0.1 

MPBS for 2 h. Aggregates are then dehydrated in a graded series 

of ethanol and embeded in epoxy resin. Ultrathin sections are 

double-stained with uranyl acetate and lead citrate, followed by 

examination with a transmission electron microscope (41, 42). 

Discussion 

The 3D high-cell density culture is considered as a standard culture 

model for its entrapped chondrogenically differentiated cells. High-

cell density culture environment is pivotal for the chondrogenic 

differentiation of hMSCs. High-cell density pellet culture systems 

formed by centrifugation are widely used to evaluate the 

chondrogenic capacity of MSCs and to study the signal pathways 

involved in chondrogenesis. The presented literature demonstrated 

that the micromass culture system, another high-cell density culture 

system formed by high-cell density suspension, is superior to the 

other high-cell density culture. In the micromass cultures, the 

induced cartilage tissues are more homogenous and rich in 

cartilage-specific collagen II, but comparing to the pellet cultures 

and alginate cultures there are markedly decreased fibrocartilage-

like features, collagen I, hypertrophic chondrocyte features, 

collagen X, indicating that the micromass culture system is a 

promising tool for in vitro chondrogenic studies. 

Bone marrow-derived MSCs are heterogeneous with 
different mesenchymal lineage potentials (20), but the induced-
cartilage is more homogeneous in micromass cultures than that 
in other high-cell density cultures. We speculate that this 

phenomenon is due, in part, to the culture conditions. Although, 
high-cell density and low oxygen tension seem to enhance MSC 
chondrogenesis (43, 44), the optimal cell density and oxygen 
tension remain unclear (45, 46). Micromass culture, is formed 

by high-cell density suspensions, may do better in nutrient 
supplementation. Pellet culture is prepared by centrifugation, 
and may create a low oxygen tension environment with 
extremely high-cell density, resulting in poor nutrient diffusion 
and eventually MSC apoptosis in the central region. Thus, there 
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should be a balance between high cell density and the diffusion 
of nutrients in the process of MSC chondrogenesis. Micromass 
cultures may provide an optimal cell density environment 

allowing cell-cell contact and diffusion of nutrients. 
On the other hand, it is more convenient to use micromass 

cultures than biomaterial-based scaffold cultures (alginate 
culture method) to investigate the molecular mechanisms 

regulating chondrogenesis, such as the relationship between 
various signaling molecules and MSC chondrogenesis, thus 
validating the importance of this model. 

The distinct difference between the micromass and other 

high density cell cultures is the efficiency of MSC chondrogenic 
differentiation. The same initial number of MSCs is induced into 
a much larger cartilaginous tissue in the micromass cultures. 
Histochemical results demonstrate a greater deposition of 
cartilage specific extracellular matrix, proteoglycans and 

collagen II in the micromass cultures. Furthermore, COL2A1 
and aggrecan mRNA levels exhibit a 1.97 and 2.12-fold increase, 
respectively, in micromass cultures comparing to that in other 
culture systems. However, stronger matrix production in 

micromass cultures is not accompanied by the up-regulation of 
SOX-9, which is an important transcription factor involved in 
chondrogenesis (47). It is likely that the expression of SOX-9 at 
low levels is already sufficient to support matrix production, 

suggesting that other factors may contribute to the higher 
efficiency of chondrogenesis in micromass cultures. However, a 
3D culture environment alone cannot maintain prolong 
chondrogenesis. Previous studies have reported the expression 

of hypertrophic-associated genes, such as collagen X, and 
fibrocartilage-like features as well as collagen I in pellet cultures 
(19, 48). In another study, expressions of collagen X and collagen 
I were significantly down-regulated in micromass cultures 

compared to that in pellet cultures, suggesting that the induced-
cartilage in micromass cultures is more similar to hyaline 
cartilage. So the micromass culture system is more efficient than 
the standard pellet culture system and alginate culture in MSC 
chondrogenesis. Furthermore, the expressions of collagen X and 

collagen Iare down-regulate in MSCs differentiated in the 
micromass cultures indicating that the induced-cartilage is more 
similar to hyaline cartilage. 

Conclusion 

In this study, we considered a comparative review of 

chondrogenic differentiation of hMSCs cultured in the 

micromass culture, pellet culture and alginate culture. The 

literature suggested that the micromass culture system is 

superior to the pellet culture system and alginate culture. It 

indicates that the micromass culture system is a superior 

approach to study the chondrogenic potential of human MSCs. 
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