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HIGHLIGHTS
•	 Highlights the importance of peptides and proteins interactions.
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ABSTRACT

Proteins are the most fascinating multifaceted biomacromolecules in living systems and 
play various important roles such as structural, sensory, catalytic, and regulatory function. 
Protein and peptide interactions have emerged as an important and challenging topic in 
biochemistry and medicinal chemistry. Computational methods as promising tools 
have been utilized to predict protein and peptide interactions in order to intervene in 
the biochemical processes and facilitate pharmaceutical peptide design and clarify the 
complications. This review will introduce the computational methods which are applicable 
in protein and peptide interaction prediction and summarizes the most successful examples 
of computational methods described in the literature.
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Introduction 

The interactions between peptides and proteins are one of 
the most effective factors on so many cellular processes 
such as signal transduction, transport of proteins, and some 
of important immunity system reactions (Rodrigues and 
Bonvin, 2014). There are multiple diversity and changes 
in these chain conformations because of ability of bindings 
between amino acids which can lead to unpredictable 
interactions (Bhattacherjee and Wallin, 2013). The small 
peptides	called	motifs	which	bind	to	specific	segments	of	
proteins are the main key of connection between peptide 
and protein in order to transduce a signal  (Kilburg and 

Gallicchio, 2016). Motifs mostly interact with low 
affinity;	therefore	they	might	interact	with	many	different	
sites of a protein chain that results in producing different 
cell products, unwanted reactions, protein degradation, 
and	 post	 translational	 modification	 (Bardwell	 and	
Treisman, 1994). As an example, domains containing SH3 
groups can bind to a motif with a sequence of proline – X 
– X – proline (X could be any amino acid) (Bhattacherjee 
and Wallin, 2013). We divide the peptide ligands based 
on the place of positive charge into two categories, class 
1 which binds from N-terminal and class 2 which binds 
from C-terminal (Hou et al., 2006). Indeed, these low 
specific	peptides	may	connect	to	multiple	sites	in	a	protein	
sequence	or	even	to	an	unrelated	protein;	hence	designing	
a precise peptide could result in having a determined and 
controlled outcome (Grigoryan et al., 2009).

Nowadays, peptide and protein therapeutics are used 
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in treating a wide range of diseases. Therefore, designing 
them	and	predicting	 the	possible	 reactions	 is	 significant	
in order to manipulate the cells in a right way (Chen 
and Keating, 2012). For this purpose, computational 
simulation	has	been	used	 to	design	a	 specific	and	high-
affinity	 ligand	 and	 predetermine	 the	 protein-peptide	
reaction and decreasing the undesirable effects (Blaszczyk 
et al., 2016). Many methods are employed for this process 
such as Monte Carlo-based and molecular dynamic, but it 
is	difficult	to	occupy	a	certain	method	in	order	to	devise	
various ligands (Chen and Keating, 2012). Figure 1 
simply shows how designing a unique peptide can make a 
correct interaction in a biologic system. On the left side a 
connective part (blue) has been chosen in order to role as 
a pattern for designing an exogenous peptide. On the right 
side, the designed peptide totally mimics the connective 
part and makes a similar interaction between two parts. 
Conclusively, designing a peptide or motif based on 
the natural sequences could results in having the same 
interaction (Nevola and Giralt, 2012).

The present review explores to summarize the 
computational methods which are mostly applicable in 
peptide and protein interaction prediction and furthermore 
we focus on some applications through introducing 
examples. 

Molecular modeling

There are many computational methods which are 
used for visualization, calculation and analysis of the 
molecular properties. One of these methods is Molecular 
Modeling (MM) (Neumaier, 1997). In this method, 
potential energy is the most important parameter which is 
used for calculation of potential energy in different atoms 
configurations.	The	stability	of	different	complexes	can	be	
determined by calculating atomic arrangement potential 
energy which is related to the atoms coordination in 
atomic structure. These forces can be estimated by solving 

motion equations numerically. 
The other parameters of the potential energy are 

constant because of harmonic forces. These constant 
parameters are used for vibrational spectra predictions, 
analysis of normal and collective modes of motion 
(Kuczera et al., 1998).

 
Molecular dynamic 

Molecular Dynamic (MD) is a computational method 
for analyzing the physical movements which solves the 
motion equations in a system of moving particles at a 
specific	amount	of	potential	energy.	The	equations	which	
are solved in MD have conformance with the Newton’s 
equations of classical mechanics but some extra equations 
are added for considering surrounding environment 
parameters (e.g. Langevin, Brownian dynamics). One of 
the advantages of Newton’s equations is the presence of 
a	 systematic	way	 to	 generate	 a	 group	 of	 configurations	
of simulated system that correspond with classical time 
evolution.	These	configurations	are	needed	for	providing	
data	about	structures.	They	also	describe	the	energy	flow	
and specify the details of changes in structural dynamics in 
a model which is used for calculating the time correlation 
functions and rates of conformational transition (Levitt, 
1983).

Monte Carlo 

Monte Carlo (MC) method is a computational algorithm 
based on calculation of random sampling (Valleau and 
Torrie, 1977). In molecular modeling, MC method is 
used for generating samples of system structures and 
corresponding distribution of system temperature. After 
calculation of average energy and structural parameters, 
the results should be validated by statistical mechanics, 
theoretical, and experimental results (Valleau and Torrie, 
1977). 

Figure 1.	Modulating	Protein-protein	interactions:	the	potential	of	peptides.	The	whole	figure	is	reproduced	from	(Nevola	and	Giralt,	2012)	with	
permission of The Royal Society of Chemistry.

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. 

 

 

 

 

 

Figure 2. 

 

9

Prediction of peptide and protein interactions 



N. Fallah et al. / TPPS 2017 2 (1) 8-14

10

Protein and peptide docking 

In recent years, peptides have played an important role in 
new drug development. Peptide unique properties such as 
their ability to react and bind with small proteins increase 
research on these macromolecular structures. Estimation 
of protein–peptide complex structure and molding the 
interaction between peptide and protein is one of the 
important advantages of numerical molding. On the 
other hand, the structure determination may be possible 
by experimental investigation such as crystallography 
and nuclear magnetic resonance spectroscopy of proteins 
(NMR). However, determination of peptide-protein 
complexes structures for all kinds of peptides and proteins 
is impossible because of wide variety of peptides and 
proteins. Molecular docking is a useful tool which uses 
databases like Protein Data Bank (PDB). Today, there 
are too many types of software of protein–drug modeling 
or rigid protein–protein docking. Actually because of 
more degrees of freedom in protein-peptide docking, 
this kind of interaction is more complicated than protein-
drug	or	protein-protein	docking	(Meng	et	al.,	2011;	Rose	
et al., 2011)

Local docking: Peptide docking to a known binding site 

In fact, good interaction estimation and good knowledge 
of interaction details have a great effect on success of 
protein–peptide complexes modeling. In local docking 

method the prior structural data are exploited for structural 
predictions. These techniques are based on evaluation of 
many peptides that are derived from a known structure for 
a single receptor (Dominguez et al., 2003).

Some current local docking programs are introduced 
in Table 1.

Global docking: Peptide docking to an unknown binding 
site 

The application of this method is when  the binding 
site is unclear.	Usually	 the	first	product	 is	peptide	 form	
ensembles,	 then	 peptide	 fits	 to	 the	 external	 surface	 of	
desired protein by rigid-body docking. Search area is 
the major parameter that has big effect on accuracy and 
efficiency	of	these	methods.	In	modeling,	most	protocols	
start	 with	 using	 coarse-grained	 protein	 model	 to	 find	
rough estimation of viable binding area. Then, higher 
resolutions up to atomic scale is used for increasing the 
method	 precision	 (Blaszczyk	 et	 al.,	 2013;	 Kurcinski	 et	
al., 2015).  Summary of some methods is presented in 
Table 2.

Pathway free energy 

In pathway free energy method, free energy that exists 
between the unbound or bound states of the ligand–
protein complex is computed by thermodynamic rules 
and equations. In other words, this method is based on 

Table 1. Summary of local docking programs.

 Method  Description  Reference

 HADDOCK Related to experimental data of biochemical and biophysical interaction (Dominguez et al., 2003)

 GalaxyPepDock  Generating protein-peptide structures by PepBind database. As inputs, It needs
PDB format of protein structure and FASTA peptide sequence. (Das	et	al.,	2013;	Lee	et	al.,	2015)

 MedusaDock  An approach uses where there is difference in conformational states of the
binding partners. (Ding et al., 2010)

Table 2. Summary of global docking programs.

 Method  Description  Reference

 The CABS-dock The base of this procedure is coarse-grained CABS protein model.  (Jamroz et al., 2013, Kurcinski et
al., 2015)

 PepATTRACT  This procedure uses combining coarse-grained peptide for investigating the
possible binding sites.

 (May	and	Zacharias,	2008;	de
Vries et al., 2015)
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free energy computation as ratios of partition functions 
(Guvench	 and	 MacKerell,	 2009;	 Gallicchio	 and	 Levy,	
2011). 

The superiority of these methods to other methods 
is modeling the absolute free energy. The path can be 
parameterized	as	λ,	ranging	from	0	to	1.	These	methods	
can	be	classified	by	their	alchemical	or	physical	pathways	
(Deng and Roux, 2009).

Physical pathway 

In physical pathway approach, the ligand transferring 
from bulk solvent to the binding site occurs. In fact, 
binding pathway along each one of the six intermolecular 
freedom degrees can be parameterized (Woo and Roux, 
2005).

Alchemical approaches 

In alchemical approach, ligand is limited to the binding 
site area and unlike the physical pathway methods, it is 
not transferred. Actually, the transformation between the 
bound and unbound states performed by dialing in ligand–
receptor interactions in a space is called alchemical space. 
This is achieved by computational calculations which 
leads	to	construct	a	λ-dependent	potential	energy	function	
and shows ligand is fully interacting with the receptor at 
λ	=0	and	ligand–receptor	interactions	are	turned	off	at	λ=1	
(Gilson	et	al.,	1997;	Boyce	et	al.,	2009).

Molecular mechanics 

The two most common end-point methods are Molecular 
Mechanics Poisson Boltzmann Surface Area (MM-PBSA) 
and Molecular Mechanics Generalized Born Surface 
Area (MM-GBSA) which are applied to protein–ligand/
protein–peptide interactions (de Ruiter and Oostenbrink, 
2011;	 Genheden	 and	 Ryde,	 2015).	 Furthermore,	 the	
mining minima method is another example of these 
methods. However, it is not applicable to protein–peptide 
binding	(Chia-en	et	al.,	2007;	Chen	et	al.,	2010).	The	main	
advantage of these methods is simplicity of parameters 
which are the free protein and peptide states, and then the 
simulation of the protein–peptide complex can be done.

Artificial intelligence 

Artificial	 intelligence	 is	 an	 evolutionary	 algorithm	 that	
was created for predicting, designing, and optimizing 
peptide	structures.	Generally,	this	method	consists	of	five	
steps:	(i)	first	step	is	about	identification	of	a	peptide	called	
″seed	peptide″	which	has	desired	activity.	(ii)	Generation	
of variants from physicochemical environment that 
surrounds the seed peptide. (iii) The next step after 
synthesis in which biased library will be tested. (iv) A 

relationship between quantitative sequence-activity will 
be	 modeled	 utilizing	 an	 artificial	 neural	 network,	 and	
finally,	(v)	effective	computational	search	based	on	neural	
network algorithm done for de novo design. This strategy 
has been successfully utilized to identify novel peptides 
(MacKerell	et	al.,	1998;	Radhika	and	Rao,	2015;	Paladino	
et al., 2017).

Applications 

Due to wide spread use of computational methods in recent 
decades, there has been many studies and experiments in 
this	 field.	As	 mentioned	 before,	 proteins	 seem	 to	 have	
a	 flexible	 conformation	 which	 makes	 the	 structure	 and	
bonds forecasting even more complicated. Some issues 
like inaccuracies, time consumption, and requirement of 
multiple	 CPUs	 lead	 the	 process	 towards	more	 efficient	
methods, for instance Monte Carlo, Rosetta docking, 
ATTRACT, and Swarm dock. Here we review some of 
these studies as instances (Kmiecik et al., 2016).

	According	 to	 significant	 role	 of	 signal	 transduction	
in human body immunity system, Cho et al. designed 
a	 case	 study	 experiment	 on	 TNF	 α-Mediated	 NF-κB	
signal transduction pathway in order to identify the key 
factors in this process. In order to illustrate the accuracy 
of quantitative hypothesis of this signaling, mathematical 
models have been used and simulated then a wide range of 
parameter values has been compared in order to consider 
the method sensitivity (Cho et al., 2003).

Nowadays, there are multiple sources presenting 
the protein structures in order to ease the prediction of 
reactions. GalaxyPepDock is one of online servers which 
perform docking based on an experimental database. 
This	 server	 first	 overview	 the	 structures	 then	 optimize	
an	 interaction	based	on	energy	and	flexibility	of	bonds.	
Here	 we	 review	 an	 instance;	 the	 input	 information	 are	
protein structure and peptide sequence. Then, based on 
the similarities of these structures, the server chooses 
and simulates a template from a database. Consequently, 
the server optimizes the bonds based on their energy and 
finally	suggests	the	most	preferred	templates	(Lee	et	al.,	
2015).

Another aspect of using computational methods 
is about a serious problem in today’s human health 
complication;	cancer.	In	this	subject,	Debasree	Sarkar	et	
al. used some of protein structure databases and MEME, 
a	 tool	 for	 finding	 ungapped	 and	 repeating	 sequences	 in	
order	 to	 find	 new	 motifs	 and	 predict	 the	 role	 of	 these	
peptide sequences in three cancer hub proteins and 
recreate novel motifs, and exert a scoring system called 
overlapping linear peptide (OLP) in order to estimate 
the overlapping of novel motifs with proteins which 
might result in producing a better known process 
of protein-peptide interaction effects in cancer cells 
(Sarkar et al., 2016).
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Designing an upgraded protein which is more reactive 
is also possible by utilizing these computational methods. 
Amy E. Palmer et al reengineered the interface of 
Calmodulin  with docking in order to be more sensitive 
to calcium ions therefore eases the monitoring of calcium 
dependent reactions in in-vitro studies. In this process they 
calculated the whole energy by Monte Carlo simulating 
progress (Palmer et al., 2006).

Toxic superoxide dismutase1 (SOD1) may be one 
of the factors responsible in the pathophysiology of 
familial amyotrophic lateral sclerosis (FALS). Designing 
and	 finding	 molecular	 agents	 that	 bind	 to	 mutant	 and	
misfolded SOD1 could be a potential approach for this 
disease treatment. 

The obstacle in designing such agents is high 
structural homology between the mutant and the normal 
SOD1  proteins. Using a computational method would 
make the process of designing agents and predicting 
their interactions with SOD1 enzyme easier and faster 
(Banerjee et al., 2017).

Cyclophilins are a group of proteins which catalyze 
the isomeration of peptidyl-prolyl peptide bond. These 
proteins exist in almost every known cell. Cyclophilin A, 
the	first	member	of	the	group	that	got	discovered,	mediates	
the action of cyclosporine, the immunosuppressant drug. 
The interaction between Cyclophilin A and HAGPIA 
peptide from the HIV-1 capsid protein was illustrated 
using pepATTRACT web server. It plots 50 poses of the 
HAGPIA peptide and tells how the peptide is inclined to 
interact with the receptor (Banerjee	et	al.,	2017;	de	Vries	
et al., 2017).

Another approach is based on metal mediated 
interactions.	Tiwari	et	al.	as	illustrated	in	figure	2	designed	
a	helix	bundle	which	connects	to	metal	sites	specifically		
using  computational methods such as Rosetta Match 
algorithm and Monte Carlo method (Tiwari et al., 
2012).

Conclusion

One	of	the	difficult	challenges	in	the	field	of	protein	and	
peptide interaction is the prediction of this procedure 
in order to build new motifs and gain the ability of 
managing	 the	process	along	 the	required	field.	 Intricacy	
of the interactions between amino acids has become less 
complicated due to development of powerful computers in 
recent decades and vast application of computer simulation 
and	modeling	tools	in	different	fields.	Application	of	these	
tools by researchers causes some features such as peptide 
design, prediction of peptide-protein complex structures 
during interactions, effectiveness of interactions, and 
reducing cost and energy. We hope in future utilizing these 
methods, researches can develop new motifs with unique 
features and furthermore protein-peptide interaction will 
be	more	figured	out.
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