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HIGHLIGHTS
•	 Highlights the importance of peptides and proteins interactions.
•	 Summarizes the computational methods which are applicable in peptide and protein interaction prediction.
•	 Highlights the applications of computational methods in peptides and proteins interactions.
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ABSTRACT

Proteins are the most fascinating multifaceted biomacromolecules in living systems and 
play various important roles such as structural, sensory, catalytic, and regulatory function. 
Protein and peptide interactions have emerged as an important and challenging topic in 
biochemistry and medicinal chemistry. Computational methods as promising tools 
have been utilized to predict protein and peptide interactions in order to intervene in 
the biochemical processes and facilitate pharmaceutical peptide design and clarify the 
complications. This review will introduce the computational methods which are applicable 
in protein and peptide interaction prediction and summarizes the most successful examples 
of computational methods described in the literature.
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Introduction 

The interactions between peptides and proteins are one of 
the most effective factors on so many cellular processes 
such as signal transduction, transport of proteins, and some 
of important immunity system reactions (Rodrigues and 
Bonvin, 2014). There are multiple diversity and changes 
in these chain conformations because of ability of bindings 
between amino acids which can lead to unpredictable 
interactions (Bhattacherjee and Wallin, 2013). The small 
peptides called motifs which bind to specific segments of 
proteins are the main key of connection between peptide 
and protein in order to transduce a signal  (Kilburg and 

Gallicchio, 2016). Motifs mostly interact with low 
affinity; therefore they might interact with many different 
sites of a protein chain that results in producing different 
cell products, unwanted reactions, protein degradation, 
and post translational modification (Bardwell and 
Treisman, 1994). As an example, domains containing SH3 
groups can bind to a motif with a sequence of proline – X 
– X – proline (X could be any amino acid) (Bhattacherjee 
and Wallin, 2013). We divide the peptide ligands based 
on the place of positive charge into two categories, class 
1 which binds from N-terminal and class 2 which binds 
from C-terminal (Hou et al., 2006). Indeed, these low 
specific peptides may connect to multiple sites in a protein 
sequence or even to an unrelated protein; hence designing 
a precise peptide could result in having a determined and 
controlled outcome (Grigoryan et al., 2009).

Nowadays, peptide and protein therapeutics are used 
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in treating a wide range of diseases. Therefore, designing 
them and predicting the possible reactions is significant 
in order to manipulate the cells in a right way (Chen 
and Keating, 2012). For this purpose, computational 
simulation has been used to design a specific and high-
affinity ligand and predetermine the protein-peptide 
reaction and decreasing the undesirable effects (Blaszczyk 
et al., 2016). Many methods are employed for this process 
such as Monte Carlo-based and molecular dynamic, but it 
is difficult to occupy a certain method in order to devise 
various ligands (Chen and Keating, 2012). Figure 1 
simply shows how designing a unique peptide can make a 
correct interaction in a biologic system. On the left side a 
connective part (blue) has been chosen in order to role as 
a pattern for designing an exogenous peptide. On the right 
side, the designed peptide totally mimics the connective 
part and makes a similar interaction between two parts. 
Conclusively, designing a peptide or motif based on 
the natural sequences could results in having the same 
interaction (Nevola and Giralt, 2012).

The present review explores to summarize the 
computational methods which are mostly applicable in 
peptide and protein interaction prediction and furthermore 
we focus on some applications through introducing 
examples. 

Molecular modeling

There are many computational methods which are 
used for visualization, calculation and analysis of the 
molecular properties. One of these methods is Molecular 
Modeling (MM) (Neumaier, 1997). In this method, 
potential energy is the most important parameter which is 
used for calculation of potential energy in different atoms 
configurations. The stability of different complexes can be 
determined by calculating atomic arrangement potential 
energy which is related to the atoms coordination in 
atomic structure. These forces can be estimated by solving 

motion equations numerically. 
The other parameters of the potential energy are 

constant because of harmonic forces. These constant 
parameters are used for vibrational spectra predictions, 
analysis of normal and collective modes of motion 
(Kuczera et al., 1998).

 
Molecular dynamic 

Molecular Dynamic (MD) is a computational method 
for analyzing the physical movements which solves the 
motion equations in a system of moving particles at a 
specific amount of potential energy. The equations which 
are solved in MD have conformance with the Newton’s 
equations of classical mechanics but some extra equations 
are added for considering surrounding environment 
parameters (e.g. Langevin, Brownian dynamics). One of 
the advantages of Newton’s equations is the presence of 
a systematic way to generate a group of configurations 
of simulated system that correspond with classical time 
evolution. These configurations are needed for providing 
data about structures. They also describe the energy flow 
and specify the details of changes in structural dynamics in 
a model which is used for calculating the time correlation 
functions and rates of conformational transition (Levitt, 
1983).

Monte Carlo 

Monte Carlo (MC) method is a computational algorithm 
based on calculation of random sampling (Valleau and 
Torrie, 1977). In molecular modeling, MC method is 
used for generating samples of system structures and 
corresponding distribution of system temperature. After 
calculation of average energy and structural parameters, 
the results should be validated by statistical mechanics, 
theoretical, and experimental results (Valleau and Torrie, 
1977). 

Figure 1. Modulating Protein-protein interactions: the potential of peptides. The whole figure is reproduced from (Nevola and Giralt, 2012) with 
permission of The Royal Society of Chemistry.
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Protein and peptide docking 

In recent years, peptides have played an important role in 
new drug development. Peptide unique properties such as 
their ability to react and bind with small proteins increase 
research on these macromolecular structures. Estimation 
of protein–peptide complex structure and molding the 
interaction between peptide and protein is one of the 
important advantages of numerical molding. On the 
other hand, the structure determination may be possible 
by experimental investigation such as crystallography 
and nuclear magnetic resonance spectroscopy of proteins 
(NMR). However, determination of peptide-protein 
complexes structures for all kinds of peptides and proteins 
is impossible because of wide variety of peptides and 
proteins. Molecular docking is a useful tool which uses 
databases like Protein Data Bank (PDB). Today, there 
are too many types of software of protein–drug modeling 
or rigid protein–protein docking. Actually because of 
more degrees of freedom in protein-peptide docking, 
this kind of interaction is more complicated than protein-
drug or protein-protein docking (Meng et al., 2011; Rose 
et al., 2011)

Local docking: Peptide docking to a known binding site 

In fact, good interaction estimation and good knowledge 
of interaction details have a great effect on success of 
protein–peptide complexes modeling. In local docking 

method the prior structural data are exploited for structural 
predictions. These techniques are based on evaluation of 
many peptides that are derived from a known structure for 
a single receptor (Dominguez et al., 2003).

Some current local docking programs are introduced 
in Table 1.

Global docking: Peptide docking to an unknown binding 
site 

The application of this method is when  the binding 
site is unclear. Usually the first product is peptide form 
ensembles, then peptide fits to the external surface of 
desired protein by rigid-body docking. Search area is 
the major parameter that has big effect on accuracy and 
efficiency of these methods. In modeling, most protocols 
start with using coarse-grained protein model to find 
rough estimation of viable binding area. Then, higher 
resolutions up to atomic scale is used for increasing the 
method precision (Blaszczyk et al., 2013; Kurcinski et 
al., 2015).  Summary of some methods is presented in 
Table 2.

Pathway free energy 

In pathway free energy method, free energy that exists 
between the unbound or bound states of the ligand–
protein complex is computed by thermodynamic rules 
and equations. In other words, this method is based on 

Table 1. Summary of local docking programs.

 Method  Description  Reference

 HADDOCK Related to experimental data of biochemical and biophysical interaction (Dominguez et al., 2003)

 GalaxyPepDock  Generating protein-peptide structures by PepBind database. As inputs, It needs
PDB format of protein structure and FASTA peptide sequence. (Das et al., 2013; Lee et al., 2015)

 MedusaDock  An approach uses where there is difference in conformational states of the
binding partners. (Ding et al., 2010)

Table 2. Summary of global docking programs.

 Method  Description  Reference

 The CABS-dock The base of this procedure is coarse-grained CABS protein model.  (Jamroz et al., 2013, Kurcinski et
al., 2015)

 PepATTRACT  This procedure uses combining coarse-grained peptide for investigating the
possible binding sites.

 (May and Zacharias, 2008; de
Vries et al., 2015)
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free energy computation as ratios of partition functions 
(Guvench and MacKerell, 2009; Gallicchio and Levy, 
2011). 

The superiority of these methods to other methods 
is modeling the absolute free energy. The path can be 
parameterized as λ, ranging from 0 to 1. These methods 
can be classified by their alchemical or physical pathways 
(Deng and Roux, 2009).

Physical pathway 

In physical pathway approach, the ligand transferring 
from bulk solvent to the binding site occurs. In fact, 
binding pathway along each one of the six intermolecular 
freedom degrees can be parameterized (Woo and Roux, 
2005).

Alchemical approaches 

In alchemical approach, ligand is limited to the binding 
site area and unlike the physical pathway methods, it is 
not transferred. Actually, the transformation between the 
bound and unbound states performed by dialing in ligand–
receptor interactions in a space is called alchemical space. 
This is achieved by computational calculations which 
leads to construct a λ-dependent potential energy function 
and shows ligand is fully interacting with the receptor at 
λ =0 and ligand–receptor interactions are turned off at λ=1 
(Gilson et al., 1997; Boyce et al., 2009).

Molecular mechanics 

The two most common end-point methods are Molecular 
Mechanics Poisson Boltzmann Surface Area (MM-PBSA) 
and Molecular Mechanics Generalized Born Surface 
Area (MM-GBSA) which are applied to protein–ligand/
protein–peptide interactions (de Ruiter and Oostenbrink, 
2011; Genheden and Ryde, 2015). Furthermore, the 
mining minima method is another example of these 
methods. However, it is not applicable to protein–peptide 
binding (Chia-en et al., 2007; Chen et al., 2010). The main 
advantage of these methods is simplicity of parameters 
which are the free protein and peptide states, and then the 
simulation of the protein–peptide complex can be done.

Artificial intelligence 

Artificial intelligence is an evolutionary algorithm that 
was created for predicting, designing, and optimizing 
peptide structures. Generally, this method consists of five 
steps: (i) first step is about identification of a peptide called 
″seed peptide″ which has desired activity. (ii) Generation 
of variants from physicochemical environment that 
surrounds the seed peptide. (iii) The next step after 
synthesis in which biased library will be tested. (iv) A 

relationship between quantitative sequence-activity will 
be modeled utilizing an artificial neural network, and 
finally, (v) effective computational search based on neural 
network algorithm done for de novo design. This strategy 
has been successfully utilized to identify novel peptides 
(MacKerell et al., 1998; Radhika and Rao, 2015; Paladino 
et al., 2017).

Applications 

Due to wide spread use of computational methods in recent 
decades, there has been many studies and experiments in 
this field. As mentioned before, proteins seem to have 
a flexible conformation which makes the structure and 
bonds forecasting even more complicated. Some issues 
like inaccuracies, time consumption, and requirement of 
multiple CPUs lead the process towards more efficient 
methods, for instance Monte Carlo, Rosetta docking, 
ATTRACT, and Swarm dock. Here we review some of 
these studies as instances (Kmiecik et al., 2016).

 According to significant role of signal transduction 
in human body immunity system, Cho et al. designed 
a case study experiment on TNF α-Mediated NF-κB 
signal transduction pathway in order to identify the key 
factors in this process. In order to illustrate the accuracy 
of quantitative hypothesis of this signaling, mathematical 
models have been used and simulated then a wide range of 
parameter values has been compared in order to consider 
the method sensitivity (Cho et al., 2003).

Nowadays, there are multiple sources presenting 
the protein structures in order to ease the prediction of 
reactions. GalaxyPepDock is one of online servers which 
perform docking based on an experimental database. 
This server first overview the structures then optimize 
an interaction based on energy and flexibility of bonds. 
Here we review an instance; the input information are 
protein structure and peptide sequence. Then, based on 
the similarities of these structures, the server chooses 
and simulates a template from a database. Consequently, 
the server optimizes the bonds based on their energy and 
finally suggests the most preferred templates (Lee et al., 
2015).

Another aspect of using computational methods 
is about a serious problem in today’s human health 
complication; cancer. In this subject, Debasree Sarkar et 
al. used some of protein structure databases and MEME, 
a tool for finding ungapped and repeating sequences in 
order to find new motifs and predict the role of these 
peptide sequences in three cancer hub proteins and 
recreate novel motifs, and exert a scoring system called 
overlapping linear peptide (OLP) in order to estimate 
the overlapping of novel motifs with proteins which 
might result in producing a better known process 
of protein-peptide interaction effects in cancer cells 
(Sarkar et al., 2016).
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Designing an upgraded protein which is more reactive 
is also possible by utilizing these computational methods. 
Amy E. Palmer et al reengineered the interface of 
Calmodulin  with docking in order to be more sensitive 
to calcium ions therefore eases the monitoring of calcium 
dependent reactions in in-vitro studies. In this process they 
calculated the whole energy by Monte Carlo simulating 
progress (Palmer et al., 2006).

Toxic superoxide dismutase1 (SOD1) may be one 
of the factors responsible in the pathophysiology of 
familial amyotrophic lateral sclerosis (FALS). Designing 
and finding molecular agents that bind to mutant and 
misfolded SOD1 could be a potential approach for this 
disease treatment. 

The obstacle in designing such agents is high 
structural homology between the mutant and the normal 
SOD1  proteins. Using a computational method would 
make the process of designing agents and predicting 
their interactions with SOD1 enzyme easier and faster 
(Banerjee et al., 2017).

Cyclophilins are a group of proteins which catalyze 
the isomeration of peptidyl-prolyl peptide bond. These 
proteins exist in almost every known cell. Cyclophilin A, 
the first member of the group that got discovered, mediates 
the action of cyclosporine, the immunosuppressant drug. 
The interaction between Cyclophilin A and HAGPIA 
peptide from the HIV-1 capsid protein was illustrated 
using pepATTRACT web server. It plots 50 poses of the 
HAGPIA peptide and tells how the peptide is inclined to 
interact with the receptor (Banerjee et al., 2017; de Vries 
et al., 2017).

Another approach is based on metal mediated 
interactions. Tiwari et al. as illustrated in figure 2 designed 
a helix bundle which connects to metal sites specifically  
using  computational methods such as Rosetta Match 
algorithm and Monte Carlo method (Tiwari et al., 
2012).

Conclusion

One of the difficult challenges in the field of protein and 
peptide interaction is the prediction of this procedure 
in order to build new motifs and gain the ability of 
managing the process along the required field. Intricacy 
of the interactions between amino acids has become less 
complicated due to development of powerful computers in 
recent decades and vast application of computer simulation 
and modeling tools in different fields. Application of these 
tools by researchers causes some features such as peptide 
design, prediction of peptide-protein complex structures 
during interactions, effectiveness of interactions, and 
reducing cost and energy. We hope in future utilizing these 
methods, researches can develop new motifs with unique 
features and furthermore protein-peptide interaction will 
be more figured out.
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