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ABSTRACT

Conventional cancer management is directly associated with many problems, including 
accurate therapeutic delivery to tumours and serious side effects of chemotherapeutics. 
A specific and efficient anticancer delivery to the tumour site without damaging normal 
tissues is the ultimate goal of all cancer treatment strategies. Nanomedicine has immense 
potential for cancer therapy that focuses on improving treatment efficacy, while reducing 
toxicity to normal tissues as well. However, the biodistribution and targeting capability 
of nanoparticles lacking targeting ligands rely solely on their physicochemical properties 
and the pathophysiological parameters of the body. Targeting is a promising strategy for 
selective and efficient therapeutic delivery to tumour cells with reduced detrimental side 
effects. Taking advantage of the fact that molecular markers and receptors over-express 
on the tumour cell surface as compared to a normal cell, the active targeting approach 
would be beneficial for cancer therapy. The epidermal growth factor receptors (EGFR), 
abnormally overexpressed in many epithelial tumours, have received much attention 
for molecular targeting in cancer diagnostics and therapeutics. This review presents the 
role of EGFR targeting in cancer imaging and therapy, and some recent researches on 
treatment of EGFR overexpressing cancers by using targeted nanoparticulate platforms. 
It also discusses illustrative examples of various ligands, including antibodies, antibody 
fragments, nanobodies, and peptides.

EGFR Targeted Nanocarriers for Cancer Diagnosis and Therapy

Review Article

Trends in Peptide and Protein Sciences
2016ˏ Vol. 1ˏ  No. 2ˏ41-55

Article history:
Received: 25 August 2016
Accepted: 13 November 2016

Introduction 

Despite advances in early diagnosis, treatment, and 
survival, cancer has been among the main causes of 
morbidity and mortality worldwide (Bray et al., 2012). 
It is characterized by abnormal and uncontrolled cellular 
proliferation, and an absence of cell death that generates 

an abnormal cell mass or tumour. Cancer treatment has 
relied on four treatment modalities, namely cytotoxic 
chemotherapy, surgery, radiotherapy, and hormone 
therapy (Urruticoechea et al., 2010). Although radiation 
and anticancer agents are able to kill neoplastic cells, they 
suffer from severe side effects due to a lack in precision 
and non-specific damage of normal tissues and cells (Cao 
et al., 2014; Perez-Herrero and Fernandez-Medarde, 
2015). Moreover, sometimes tumours fail to respond to 
the most commonly used treatment methods. Thus, there 



A. Haeri & M. Osouli / TPPS 2016 1(2) 41-55

42

is great demand for the development of novel methods 
to improve the current outcomes and also reduce toxic 
effects. 

The systemic adverse effects of chemotherapeutic 
agents and treatment failures have led to research 
on the development of advanced delivery systems. 
Nanomedicine, the application of nanotechnology in 
medicine, aims for significant breakthroughs in cancer 
detection, treatment, and monitoring (Chow and Ho, 
2013; Babu et al., 2014).

Nanoparticles are colloidal particles with an average 
particle size of 10 to 1000 nm. However, in cancer 
nanotechnology, average particle sizes of less than 200 
nm are often used. Nanoparticles, led by liposomes, 
began to gain the focus of cancer research nearly three 
decades ago. Since then, biomedical researches on 
nanoparticles have been continuously proving them as 
being effective for drug and gene delivery (Kim et al., 
2010; Wicki et al., 2015; Bregoli et al., 2016). Diverse 
nanoparticulate delivery platforms, including liposomes, 
polymeric nanoparticles, polymeric micelles, dendrimers, 
nanosuspensions, and inorganic nanoparticles (e.g., 
calcium phosphate, iron oxide, silica, and gold), highlight 
their promise for producing tailor-made cancer therapies 
and gain attention as being potential candidates to address 
the challenges of treating resistant tumours (Estanqueiro 
et al., 2015; Wicki et al., 2015).

Nanocarriers offer unique advantages such as 
nanoscale size, high surface-to-volume ratio, favourable 
physicochemical characteristics, the possibility to 
encapsulate hydrophilic and hydrophobic cargos, 
controlled released properties, and increased drug in vitro 
and in vivo stability. They have the potential to modulate 
pharmacokinetics, pharmacodynamics, blood circulation 

time, and tissue distribution of drugs, thereby enhancing 
their therapeutic index. Thus, in oncology, nanomedicines 
can alter the biodistribution of drugs by allowing the 
highest accumulation of cytotoxic agents preferably in the 
tumour tissue (Aslan et al., 2013; Petschauer et al., 2015). 
One of the most commonly cited reasons for the preferred 
accumulation at target site, is the nanocarriers’ ability to 
exploit the enhanced permeability and retention (EPR) 
effect (Fig. 1). In EPR phenomenon, the combination of 
the leaky microvasculature and missing or tight lymphatic 
capillary system are involved. Deregulated angiogenesis 
as well as increased expression and activation of vascular 
permeability factors result in a porous vasculature. In 
addition to the formation of this discontinuous endothelial 
layer, dysfunctional lymphangiogenesis and compression 
of the lymphatic vessels by growing cancer cells lead to 
impaired lymphatic drainage in tumour tissue (Taurin et 
al., 2012; Nehoff et al., 2014). Moreover, the absence of 
large fenestrations in non-pathological tissues prevents the 
extravasation and deposition of nanoparticles in healthy 
tissue. Due to their large size (> 10 nm), anticancer loaded 
nanoparticles administered intravenously (IV) can escape 
renal clearance (Greish, 2010). These notable parameters 
improve treatment effectiveness and limit the side-effects 
associated with cytotoxic agents (Mattheolabakis et al., 
2012; Bertrand et al., 2014).

Passive targeting depends on EPR facilitating 
efficient localization of small non-targeted particles in 
the interstitial space of tumours (Fig. 1). For successful 
passive targeting, a sufficiently long blood circulation 
time of the nanoparticles, prevention of premature 
release of the payload from the nanocarriers, and efficient 
extravasation through the walls of tumour site blood 
vessels are important issues. These goals can be achieved 

Figure 1. Schematic representation of passive and active tumor accumulation of nanoparticles due to the EPR effect.
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through nanocarriers with appropriately small size, 
optimal stealth properties, typically by the incorporation of 
hydrophilic polymers like polyethylene glycol (PEG) into 
the nanomaterial shell, and controlled release properties 
(Lehner et al., 2013). However, passive targeting cannot 
further promote the uptake of nanoparticles by cancer 
cells and is restricted to some tumours. Nonvascularized 
sites and nascent tumours are unlikely to benefit from 
EPR mediated passive targeting. The EPR effect is 
also influenced by other factors, such as the amount 
of infiltration by macrophages, tumour location, the 
surrounding stroma, and patient characteristics (Sawant 
and Torchilin, 2012; Markman et al., 2013; Kraft et al., 
2014).

This second step in uptake can be achieved by actively 
targeting nanoparticles towards internalization-prone 
cell-surface receptors or other surface membrane proteins 
overexpressed on the target sites (Fig. 1B). The addition 
of targeting ligands allows the delivery of drug-loaded 
nanoparticles to uniquely identifiable diseased organs, 
tissues, cells or subcellular domains, thereby reducing 
unwanted systemic exposure to cytotoxic agents. 
Therefore, the approach is aimed towards increasing 
specific interactions between nanoparticles and cells, 
and promoting internalization of the drugs by triggering 
receptor-mediated endocytosis without altering the 
overall biodistribution (Peer et al., 2007; Bertrand et al., 
2014). The enhanced cellular internalization rather than 
an increased tumour accumulation is responsible for the 
antitumoral efficacy of actively targeted nanocarriers. 
Furthermore, active targeted nanocarriers have shown a 
potential to bypass P-glycoprotein-mediated drug efflux 

and suppress multidrug resistance (MDR) (Yu et al., 
2010). Active targeting exploits specific modification of 
the nanoparticle surface with numerous targeting ligands 
selected on the basis of their selectivity or overexpression 
of their target in cancer cells or tumour vasculature, 
including antibodies, antibody fragments, nucleic acids 
(aptamers), peptides, whole proteins (e.g., transferrin), 
carbohydrates, and vitamins (Peer et al., 2007; Bertrand 
et al., 2014). The breakthrough of targeted nanoparticles 
has the potential to become the optimal delivery strategy 
and might shift the paradigm of cancer diagnostics and 
treatment. 

EGFR: Signalling pathways and overexpression 
in cancer

The epidermal growth factor receptor (EGFR)/Her1/
ErbB1 is one of the four transmembrane growth factor 
receptor proteins that belong to the ErbB family of 
receptor tyrosine kinase, which share similarities in 
structure and function. Other members of the ErbB group 
include HER2 (ErbB2 or Neu), HER3 (ErbB3) and HER4 
(ErbB4) (Fig. 2) (Hynes and Lane, 2005).

EGFR is a 170 kDa glycoprotein and consists of an 
extracellular domain, a hydrophobic transmembrane 
region, a cytoplasmic tyrosine kinase-containing 
region, and several intracellular tyrosine residues. The 
extracellular domain provides a ligand-binding site for 
epidermal growth factor (EGF) and transforming growth 
factor-alpha (TGF-α), and the intracellular domain of 
EGFR is activated upon ligand binding that triggers 
the EGF-mediated tyrosine kinase signal transduction 

Figure 2. Schematic representation of cellular effects and signaling pathways regulated by the four HER family members.



A. Haeri & M. Osouli / TPPS 2016 1(2) 41-55

44

pathway (Herbst, 2004; Vallbohmer and Lenz, 2005). 
In normal cells, the expression of EGFR ranges from 

4 × 104 to 1 × 105 receptors per cell and leads to cellular 
growth. Its signalling and overexpression can provide 
substantial advantages in tumour cells survival and may 
confer worse prognosis. EGFR is overexpressed in the 
majority of solid tumours, including head and neck, renal, 
breast, non–small cell lung (NSCLC), bladder, ovarian, 
and colon cancer (Table 1) (Herbst, 2004; Rocha-Lima et 
al., 2007; Yewale et al., 2013). For example, some tumour 
cells can express more than 2 × 106 receptors per cell 
(Herbst, 2004). 

Multiple ligands bind to and activate the EGFR, 
including EGF, TGF-α, heparin-binding EGF, and 
amphiregulin. The activation of EGFR leads to multiple 
cell responses, inducing gene expression, cellular growth, 
differentiation, and migration. After ligand binding with 
EGFR, receptor homo- or heterodimerization occurs at the 
cell surface, followed by internalization of the dimerized 
receptor, intrinsic protein tyrosine kinase activation, 
and autophosphorylation of the intracytoplasmic EGFR 
tyrosine kinase domains. Phosphorylated tyrosine kinase 
residues serve as binding sites for the recruitment and 
phosphorylation of several intracellular substrates, which 
then stimulate an intracellular signal transduction cascade 
(Fig. 2) (Slichenmyer and Fry, 2001; Goffin and Zbuk, 
2013).

Since their introduction by Mendelsohn and his co-
researchers as a target for cancer therapy (Kawamoto et 
al., 1983; Sato et al., 1983), they have been receiving much 
attention in the last 20 years for designing therapeutic 
agents to target EGFR and these new treatment options 
have shown great benefits in several epithelial tumours 
malignancies.

EGFR inhibition can be achieved mostly by using two 
classes of drugs, small-molecule tyrosine kinase inhibitors 
and monoclonal antibodies (mAbs) (Dassonville et al., 
2007). They share the same target, but display different 

EGFR specificity and mechanisms of action. Small-
molecule tyrosine kinase inhibitors compete reversibly 
with adenosine 5′ triphosphate (ATP) binding to the 
EGFR tyrosine kinase domain of the receptor, and inhibit 
EGFR autophosphorylation and the downstream EGFR 
signalling pathways. The mAbs bind to the extracellular 
domain of EGFR, and compete with endogenous ligands 
and interfere with ligand-dependent receptor activation 
by blocking the ligand-binding region (Dassonville et al., 
2007).

Great efforts have also been made for the molecular 
targeting of nanoparticles by EGFR pathway and this is 
the main focus of the current review paper.

EGFR targeting by ligand conjugated 
nanoparticles                                  
EGFR targeting by antibodies decorated nanoparticles

 
Antibodies with specific binding affinity to cell-surface 
receptors enable the selective delivery of drug-loaded 
nanocarriers to target cells and may possess therapeutic 
effects as well (Zhong et al., 2014; Perez-Herrero and 
Fernandez-Medarde, 2015). EGFR is the first molecular 
target for cancer therapy against which mAbs have been 
developed. Till now, a number of mAbs such as cetuximab 
(Erbitux®), panitumumab (Vectibix™), necitumumab 
(TheraCIM®), and matuzumab have been developed 
for blocking EGFR activation (Friedlander et al., 2008; 
Pirker, 2013). Among them, cetuximab (Kaluzova et al., 
2015; Tseng et al., 2015) and panitumumab (Li et al., 
2012; Maya et al., 2013; Yook et al., 2015, 2016) have 
been conjugated to different nanocarriers to improve 
cancer imaging and therapy over non-targeted carriers 
(Tables 2-4). 

Cetuximab has been conjugated to different 
nanoformulations, namely liposomes, nanoparticles, and 
micelles (Tables 2-4). Cetuximab (Erbitux®, C225) is a 
monoclonal chimeric human–murine IgG1 antibody that 

Table 1. EGFR expression in various types of cancer (Rocha-Lima et al., 2007; Yewale et al., 2013).
Tumor type Percentages of tumors overexpressing EGFR

Head and neck 80 - 100

Renal 50 - 90

Non-small cell lung 40 - 80

Breast 14 - 91

Colon 22 - 75

Ovarian 35 - 70

Prostate 39 - 47

Glioma 40 - 63

Pancreas 30 - 50

Bladder 31 - 48
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Table 2. Selected examples of research on EGFR targeted liposomes.

Targeting ligand Cargo Cell line / Tumor Observations Investigation 
status Ref.

Cetuximab Celecoxib Human colon 
cancer cell line

Celecoxib loaded anti-EGFR 
immunoliposomes improved 

toxicity compared to the 
non-targeted ones in EGFR-
overexpressed cancer cells.

In vitro (Limasale et al., 
2015)

Cetuximab

Benzoporphyrin
derivative 

monoacid A

Human 
epidermoid 

carcinoma cell 
line, human breast 

carcinoma cell 
line,

human epithelial 
ovarian carcinoma 

cell line

The cetuximab targeted liposomes 
selectively bound to EGFR 

overexpressed cells. The inhibition 
of EGFR signaling by photo-
immunoconjugate associating 

liposomes enhanced photodynamic 
therapy.

In vitro (Mir et al., 2013)

Cetuximab Indocyanine green
Human 

epidermoid 
carcinoma cell line

The binding of cetuximab targeted 
fluorescent labeled liposomes to 
A431 was greater compared with 

normal enterocytes expressing 
physiological EGFR levels, 

ensuring imaging abilities of the 
targeted nanocarrier.

In vitro (Portnoy et al., 
2011)

Cetuximab / 
cetuximab-Fab’ 
fragments

Oxaliplatin Colorectal cancer

EGFR targeted oxaliplatin 
liposomes were more efficient in 

tumor drug accumulation than 
free drug or non-targeted vesicles, 
which improved efficacy in mice 
inoculated with a tumor cell line 

overexpressing this receptor.

In vitro / in vivo (Zalba et al., 
2015)

Cetuximab-Fab’ 
fragments Doxorubicin

Large-scale, GMP-compliant 
production of anti-EGFR-

targeted nanoparticles for clinical 
application was described.

In vitro (Wicki et al., 
2015)

EGFR antibody Cisplatin Non small cell 
lung cancer

Cisplatin loaded EGFR targeted 
liposomes showed higher efficacy 

than non-targeting nanocarriers both 
in vitro and in vivo. The targeted 

nanocarrier radiosensitized cells in 
a targeted manner without inducing 

nephrotoxic effects.

In vitro / in vivo (Jung et al., 
2015)

Anti-EGFR Fab’ siRNA Hepatocellular 
carcinoma

Targeted nanocarriers possessed 
high siRNA entrapment and 

improved serum stability. Compared 
with non-targeted vesicles, targeted 

carriers showed enhanced EGFR 
targeting efficiency and achieved a 

superior gene silencing activity.

In vitro / in vivo (Gao et al., 2012)

EGF Cisplatin Ovarian cancer

Sodium alginate-cisplatin conjugate 
was synthesized and incorporated 
into EGF-targeted liposomes. This 
targeted nanoparticle improved the 
antitumor efficacy in vitro as well 

as in vivo.

In vitro / in vivo (Wang et al., 
2014)

EGF Oxaliplatin Colorectal cancer

Targeted liposomes showed 
improved oxaliplatin cytotoxicity, 

higher tumor accumulation, 
and more homogeneous tumor 

distribution.

In vitro / in vivo (Zalba et al., 
2016)
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Table 2. (continue).

Anti-human HB-
EGF monoclonal 
antibody (IgG)

Doxorubicin Breast cancer

Doxorubicin loaded anti-HB-EGF 
targeted liposomes caused strong 

suppression and regression of 
MDA-MB-231 tumors in mice.

In vitro / in vivo (Nishikawa et al., 
2012)

EGa1 nanobody 
AG538: an anti-
IGF-1R kinase 

inhibitora

Head and neck 
squamous cell 

cancer

AG538-loaded nanobody 
decorated liposomes blocked 
EGFR and IGF-1R activation, 

downregulated EGFR, and induced 
a strong inhibition of tumor cell 

proliferation.

in vivo (van der Meel et 
al., 2012)

EGa1 nanobody 
AG538: an anti-
IGF-1R kinase 

inhibitor

Head and neck 
squamous cell, 
breast cancer

Tumors highly dependent on EGFR 
and IGF-1R signaling could be 

treated by combination therapy with 
kinase inhibitor-loaded nanobody 

decorated liposomes.

In vitro / in vivo (van der Meel et 
al., 2013)

GE11 Doxorubicin Non small cell 
lung cancer

GE11-conjugated liposomes 
showed higher accumulation and 

prolonged retention in tumor tissue.
In vitro / in vivo (L. Cheng et al., 

2014)

specifically targets the human EGFR with a 2-log higher 
affinity than the natural ligands, TGF-α and EGF (Kim 
et al., 2001; Capdevila et al., 2009). It inhibits signal 
transduction through binding to domain III of the EGFR 
extracellular region and, thereby blocks ligand binding. 
The binding of cetuximab to EGFR promotes receptor 
internalization and subsequent degradation, resulting 
in downregulation of the receptor. Cetuximab may also 
act via antibody-dependent cellular cytotoxicity and 
complement-dependent cytotoxicity. The cetuximab 
antitumor activity has been demonstrated in preclinical 
studies, including blockage of the cell cycle in G1, 
inhibition of proliferation and angiogenesis, induction 
of apoptosis, inhibition of DNA repair, and inhibition of 
tumour cell motility, invasion, and metastasis (Labianca 
et al., 2007; Vincenzi et al., 2010).

The US Food and Drug Administration (FDA) has 
approved cetuximab as a first-line treatment for EGFR-
overexpressing K-ras wild-type metastatic colorectal 
cancer in combination with chemotherapy. Cetuximab is 
also indicated for the treatment of patients with recurrent 
and/or metastatic squamous cell carcinoma in combination 
with platinum-based therapy plus 5-florouracil (5-FU) 
and in combination with radiation therapy for locally 
advanced disease (Harding and Burtness, 2005; Vincenzi 
et al., 2010; Petrelli et al., 2014).

In a recent study, anti-EGFR mAbs (225) were 
conjugated to organic-inorganic hybrid liposomal 
cerasomes creating immunocerasomes for selective 
EGFR cancerous cell cargo delivery (Leung et al., 2014). 

mAbs were conjugated to cerasomes via maleimide–thiol 
coupling chemistry and a fluorescent lipid (NBD-DPPE) 
was incorporated into nanocarriers for imaging analysis 
of cellular binding, internalization, and intracellular fate 
of the lipidic nanovesicles in three cell lines differing in 
EGFR expression. By conjugation of about 60 anti-EGFR 
mAbs to each nanovesicle, receptor-mediated endocytosis 
of immunocerasomes was increased by 4.6-fold and 2.4-
fold in A431 epidermoid carcinoma cells and DU145 
prostate carcinoma cells, respectively. Immunocerasomes 
also inhibited the proliferation of A431 cells. Interestingly, 
the presence of serum in the cell culture medium 
increased the endocytosis of immunocerasomes, possibly 
by stimulating a variety of cell activities such as the 
recycling of internalized EGFR (Leung et al., 2014).

Panitumumab is a fully human IgG2 antibody. Similar to 
cetuximab, the induction of cell cycle arrest, promotion of 
apoptosis, and EGFR downregulation have been proposed 
as mechanisms of growth inhibition (Keating, 2010). In a 
study on panitumumab decorated liposomes, S. Li et al. 
(2012) proposed a new post-lumpectomy locoregional 
therapy using tumour targeted immunoliposomes through 
a technique of preparing liposomes carrying diagnostic 
technetium-99m (99mTc), and therapeutic beta-emitting 
(rhenium-186 (186Re)/rhenium-188 (188Re)) radionuclides 
for cancer therapy with the advantages of real time 
monitoring of pharmacokinetic and prediction of therapy 
effect. Panitumumab was conjugated to PEGylated 
lipids, and the antibody-modified PEGylated lipids were 
incorporated into liposomes comprising DSPC/DSPG/
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Figure 3. Schematic representation of antibody, antibody fragments, single-chain fragment variable (scFv) antibody and nanobody.

cholesterol. An enhanced green fluorescence protein-
expressing MDA-MB-231 breast cancer orthotopic 
xenograft nude rat model was used for in vivo retention 
and biodistribution monitoring. The groups treated with 
panitumumab modified liposome had higher intracavitary 
retention as compared to the non-targeted vesicle 
administered groups. Beta-emitting radionuclide-carrying 
panitumumab targeted liposomes improved therapeutic 
potential as compared to non-targeted liposomes for 
use in enhanced post-lumpectomy focal radiotherapy to 
eradicate peripheral lymph node and locally remaining 
metastatic breast cancer cells with low systematic toxicity 
(Li et al., 2012).

EGFR   targeting  by  Fab′ decorated  nanoparticles 

Most mAbs that are used for targeted drug delivery 
belong to the IgG class of immunoglobulins (IgG1, IgG2a 
or IgG2b). Although the approach of ligand mediated 
targeting was initialized by mAbs, the trend has shifted 
at least partially towards the use of antibody fragments 
for targeting drug nanocarriers. It has been reported that 
mAbs have higher binding avidity due to the presence 
of two binding sites on the molecule (Fig. 3). However, 
linking the whole mAb to nanoparticles usually results in 
random orientation of this molecule on the carrier surface, 
which limits antigen or receptor binding site exposure and 
also yields exposure to Fc domains. The presence of the Fc 
domain can promote mAb binding to normal tissues through 
Fc receptors, particularly on macrophages. This can result 
in high liver and spleen uptake of the ligand decorated 
nanocarriers, faster clearance from circulation, and 

increased immunogenicity of the molecule (Allen, 2002).
F(ab′)2 and Fab′ fragments (Fig. 3) lack the Fc domain 

and the complement-activating region, and this might 
abolish uptake by the phagocytic system and reduce their 
immunogenicity. F(ab′)2 fragments have two binding 
regions linked by disulphide bonds and can be quite stable 
during storage. Under reducing conditions, the disulphide 
bonds are cleaved to yield two Fab′ fragments—each 
of these Fab′ fragments contains a thiol (-SH) group 
that is very useful for the conjugation of the fragments 
to the nanocarrier. Fab′ fragments, however, have only 
one binding site, which reduces their binding avidity. 
This disadvantage can be restored by coupling several 
fragments at the nanocarrier’s surface (Allen, 2002; 
Cheng and Allen, 2008).

Fab′ fragments have been used to direct liposomes to 
EGFR-overexpressed cells (Zalba et al., 2015; Haeri et 
al., 2016). We prepared a novel multifunctional stimulus-
triggered nanocarrier by a preparation of thermosensitive 
liposomes conjugated to Fab´ fragments of cetuximab to 
combine the tumour-targeting capability of EGFR specific 
ligands with on-demand drug release properties of heat 
sensitive liposomes (Haeri et al., 2016). Cetuximab-
Fab´ fragments, comprising both variable heavy (VH) 
and variable light (VL) domains, have been reported 
to retain the antigen-binding affinity of cetuximab 
(cetuximab Kd ~ 2.7 nM; Fab´ Kd ~ 3.7 nM) (Kamat et 
al., 2008; Hur et al., 2010). The effect of ligand density 
on in vitro targeting efficiency was studied. The results 
revealed that a density of about 36-40 Fab´ fragments per 
vesicle was enough to enable receptor-ligand binding. 
The physicochemical characteristics of liposomes did 
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Table 3. Selected examples of research on EGFR targeted nanoparticles.

Nanocarrier Targeting 
ligand Cargo Tumor Observations Investigation 

status Ref.

Silk fibroin 
nanoparticle

iRGD–EGFR 
nanobody Paclitaxel Cervical 

cancer 

Nanonody conjugated paclitaxel 
loaded nanocarriers showed 
superior antitumor efficacy 

and better in vitro and in vivo 
tumor targeting compared to 

unconjugated nanoparticles in 
EGFR overexpressing tumors.

In vitro /
in vivo 

(Bian et al., 
2016)

Iron Oxide 
nanoparticle

ScFv from 
EGFR antibody

Breast cancer 
cell line

Protein-coated nanoconstructs as 
a promising new class of MRI 
contrast agents were prepared 

and easily functionalized with a 
single chain fragment from the 

antibody of EGFR.

In vitro /
in vivo

(Huang et 
al., 2013)

Superparamagnetic 
iron oxide 
nanoparticles

EGFR-
targeting 
peptide

Lung cancer

Results showed that EGFR 
targeting enhanced tumor 
retention of nanoparticles. 

Magnetic hyperthermia treatment 
using targeted nanoparticles 

resulted in significant inhibition 
of in vivo lung tumor growth.

In vitro / 
in vivo

(Sadhukha 
et al., 2013)

Polymeric 
nanoparticles

EGFR-specific 
monoclonal 

antibody
Gemcitabine

Human 
pancreatic cell 

line

Antibody-conjugated PLGA-
PEG nanoparticles were prepared 

by direct covalent coupling of 
antibodies to vesicles using 
glutaraldehyde and showed 
specific targeting to EGFR-

overexpressing cells.

In vitro (Aggarwal 
et al., 2013)

Polymeric 
nanoparticles

EGFR targeting 
peptide Tylocrebrine

Human 
epidermoid 

cancer

Encapsulation of the drug 
in polymeric nanoparticles 

significantly limited its CNS 
penetration and toxicity. 

Targeted nanoparticles enhanced 
tumor cell uptake, tumor tissue 

accumulation, and in vivo 
antitumor efficacy.

In vitro / 
in vivo

(Kirtane et 
al., 2015)

Gold nanoparticles Panitumumab Human breast 
cancer 

Targeted gold nanoseeds as a 
novel neoadjuvant brachytherapy 

agent injected intratumorally 
were highly effective for 

inhibiting the tumor growth.

In vitro / 
in vivo

(Yook et 
al., 2016)

Gold nanoparticles Cetuximab Lung cancer

Cetuximab gold nanoparticles 
were prepared and radiolabeled 
with In-111. Elevated uptake of 

the targeted nanoparticles into the 
tumor was observed.

In vitro / 
in vivo

(Kao et al., 
2014)

O-carboxymethyl 
chitosan 
nanoparticle

Cetuximab Paclitaxel

Epidermoid 
cancer, lung 
cancer, and 

breast cancer 
cell lines

Spherical stable targeted 
nanoparticles were prepared. 

Enhanced cell death was 
observed in different EGFR 

positive cancer cell lines exposed 
to cetuximab targeted chitosan 

nanoparticles.

In vitro (Maya et 
al., 2013)

Lipid nanoparticles

Fab’ antibody 
against 
heparin-

binding EGF-
like growth 

factor

siRNA
Human breast 

cancer cell 
line

siRNA encapsulated in targeted 
nanoparticles induced obvious 

suppression of both target 
mRNA and protein levels in 

MDA-MB-231 cells resulting in 
effective gene silencing.

In vitro (Okamoto 
et al., 2014)
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Lipid based 
nanoparticles EGF Gemcitabine Breast cancer

EGF conjugated nanoparticles 
accumulation in tumor cells was 
correlated to EGFR expression. 
In vivo, EGFR over-expressing 
tumors treated with the targeted 
nanoparticles grew significantly 
slower than tumors treated with 

untargeted vesicles. 

In vitro / 
in vivo

(Sandoval 
et al., 2012)

Gelatin 
nanoparticles EGF Doxorubicin Lung cancer

The targeted nanoparticles 
effectively internalized into and 
inhibited EGFR overexpressing 
lung cancer cells via a receptor-

mediated endocytosis. The tumor 
growth remarkably suppressed 
in animals treated with targeted 

nanoparticles. 

In vitro / 
in vivo

(Long et 
al., 2014)

Eudragit based 
hollow mesoporous 
silica nanoparticles 

EGF 5-fluorouracil
Colorectal 
cancer cell 

line

Targeted 5-FU loaded highly 
dispersed mesoporous silica 

nanospheres were prepared and 
highly specific targeting to EGFR 

positive cells was achieved.

In vitro (She et al., 
2015)

Table 3. (continue).

not change significantly upon ligand conjugation. Fab´-
functionalized thermosensitive liposomes can specifically 
and efficiently bind to the EGFR overexpressed cancer 
cells. Calcein labelled Fab´-conjugated thermosensitive 
liposomes showed adequate stability at 37°C in serum 
and a temperature dependent release at > 40°C. FACS 
analysis and live cell imaging revealed EGFR mediated 
cellular association as well as dramatic intracellular 
cargo release upon hyperthermia. Fab´-conjugation and 
induced hyperthermia enhanced tumour cell cytotoxicity 
of doxorubicin loaded liposomes. The relative 
cytotoxicity of Fab´-linked liposomes was also correlated 
to EGFR density on the tumour cells. 

These results suggest that this new combinatory 
active targeting and triggering strategy may offer a 
promising approach for selective treatment of EGFR 
high-expressing tumours, while restricting drug 
delivery to the tumour site by localized hyperthermia 
(Haeri et al., 2016).

EGFR targeting by single-chain variable fragment 
(scFv) decorated nanoparticles 

Small recombinant antibody fragments are being 
increasingly used as alternatives to mAbs for medical 
therapeutic and diagnostic applications. One of the most 
promising types of recombinant antibody fragments 
is scFv (Fig. 3) (Ahmad et al., 2012; van der Meel 
et al., 2013).

The scFv is the smallest unit of immunoglobulin 
molecule that functions in antigen-binding activities and 

consists of VH and VL chains, which are joined together 
by a flexible peptide linker. Peptide linkers usually 
vary from 10 to 25 amino acids in length, and typically 
include hydrophilic amino acids to avoid intercalation 
of the peptide within or between the variable domains 
throughout the protein folding. The length of the flexible 
is critical in yielding the correct folding of the polypeptide 
chain (Weisser and Hall, 2009; Ahmad et al., 2012).

Engineered scFvs conjugated to various 
nanoformulations are poised to provide the next wave 
of Ab-mediated targeted drug delivery platforms. These 
promising ligands have been utilized for EGFR targeting 
of tumours (Tables 2 and 3) (Peng et al., 2011; Huang et 
al., 2013).

Peng et al. (2011) developed a novel scFv conjugated-
heparin nanoparticle for targeted delivery of cisplatin 
to EGFR-positive tumour cells. The nanocarrier was 
evaluated in terms of drug loading efficiency, sustained 
drug release profile, and in vitro cytotoxicity. 

The results showed that the targeted nanoparticles 
can significantly increase intracellular concentrations 
of cisplatin in EGFR-expressing NSCLC H292 cells 
via an EGFR-mediated pathway. Compared to the 
free drug, systemic delivery of the nanoparticles 
significantly prolonged drug blood circulation time, 
and improved pharmacokinetics and biodistribution 
profiles. The new nanoparticle delivery system 
significantly enhanced cisplatin antitumor activity 
without weight loss or toxicity to the kidney and 
spleen in nude mice bearing H292 cell tumours 
(Peng et al., 2011).
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Targeting 
ligand Cargo Tumor Observations Investigation 

status Ref

Cetuximab Docetaxel Breast cancer cell 
lines

Judged by IC50, therapeutic 
effects of docetaxel greatly 

enhanced by the formulation of 
cetuximab conjugated TPGS 
micelles. Targeted micelles 

showed successful delivery of 
docetaxel into the tumors.

In vitro /
in vivo

(Kutty and Feng, 
2013; Kutty et al., 

2015;)

Cetuximab
Doxorubicin /

superparamagnetic 
iron oxide

Human epidermoid 
carcinoma cell line

Immunomicelles showed 
specific interactions with EGFR-
overexpressing tumor cells and 

higher cytotoxicity.

In vitro (Liao et al., 2011)

GE11
Silicon 

phthalocyanine-4 
photosensitizer

Head and neck 
cancer

EGFR-targeted photosensitizer 
nanoformulation showed improved 
uptake as well as significant cell-
killing in EGFR-overexpressing 

cancer cells. 
EGFR-targeted nanoformulation 

resulted in significant intratumoral 
cargo uptake and subsequent 

enhanced photodynamic therapy 
response in vivo.

In vitro / In vitro (Master et al., 
2013)

GE11 Aminoflavone Triple negative 
breast cancer

GE11 peptide targeted nanocarrier 
resulted in enhanced cellular 

uptake, strong growth inhibitory 
effects, and high plasma and tumor 

levels in triple negative breast 
cancer. 

In vitro / In vitro (Brinkman et al., 
2016)

GE11 Coumarin-6 /
paclitaxel

Human laryngeal 
cancer cell line

Paclitaxel loaded GE11-modified 
micelles efficiently bound to target 
cell and significantly inhibited cell 

proliferation.

In vitro (Ren et al., 2015)

GE11 Doxorubicin Liver cancer

GE11-modified micelles exhibited 
a much higher level of cargo in 
tumor tissue than nontargeted 

micelles.

In vitro /in vivo (Fan et al., 2016)

LT6 
hexapeptide

Doxorubicin / 
paclitaxel

Human ovarian 
carcinoma cell line

human breast 
adenocarcinoma 

cell line

The peptide-conjugated 
micelles increased intracellular 

accumulation and cytotoxicity of 
anticancer drugs in EGFR high-

expressed cells.

In vitro (Lin and Kao, 
2014)

Table 4. Selected examples of research on EGFR targeted micelles.

EGFR targeting by nanobodies decorated 
nanoparticles 

Notwithstanding the vast amount of testing and research 
on engineering Fab̕ fragment, variable fragment, and 
scFv to overcome the restrictions of full-length mAbs, 
their average activities are still suboptimal due to lower 
affinities and limited stability, especially in the case of 
scFv. Nanobodies, recombinant single-domain, variable 
fragments of camelid heavy chain-only antibodies (~95 
kDa) (Fig. 3), which are able to bind selectively to a 

specific antigen, may address several of these concerns. 
Nanobodies, with approximate molecular weight of 12-
15 kDa, are considered the smallest naturally derived 
antigen-binding fragment (Fig. 3). 

The investigation of their structures revealed a prolate 
(rugby ball) shape of approximately 2.5 nm in diameter 
and 4.2 nm in length. Nanobody hallmarks include 
specificity and affinity, small size, high solubility, refolding 
capacity and stability, weak immunogenicity, ease 
of cloning with high yield as well as thermal and 
chemical resistance (Oliveira et al., 2013; Chakravarty 
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et al., 2014; Kijanka et al., 2015; Van Audenhove 
and Gettemans, 2016). With all the mentioned 
characteristics, nanobodies are very promising building 
blocks to function as novel targeting ligand for a wide 
variety of nanoparticulate platforms. Nanobody-linked 
nanoparticles have been used for enhanced EGFR 
specificity (Tables 2 and 3). 

As an example, PEGylated extracellular vesicles 
were decorated with EGFR specific nanobodies. The 
nanobodies were conjugated to phospholipid DMPE-
PEG derivatives to prepare nanobody-PEG-micelles. 

By ‘post-insertion’ method, a temperature-dependent 
transfer of nanobody-PEG-lipids to the vesicle membranes 
was observed. 
This process did not affect extracellular vesicles size 
distribution, morphology, or protein composition. Due 
to the shielding properties of PEG, cellular binding of 
PEG-conjugated control nanobodies to extracellular 
vesicles was compromised. However, EGFR-specific 
nanobodies dramatically increased specific binding 
to EGFR-overexpressing tumour cells. Moreover, 
the circulation time of nanobody-PEG-lipids 
increased at least six times as compared to 
unmodified extracellular vesicles (Kooijmans et al., 
2016). 

EGFR targeting by EGF decorated nanoparticles 

EGF is an endogenous growth factor and the natural ligand 
for EGFR. It is a single-chain polypeptide comprising 53 
amino acids with a molecular weight of approximately 
6 kDa. EGF is a small stable peptide that undergoes 
receptor-mediated endocytosis and transports the ligand-
receptor complex into the target cell (Bohl Kullberg 
et al., 2002). EGF offers unique advantages for EGFR 
targeting over EGFR antibody: Stronger binding affinity 
and more rapid clearance rates due to a smaller molecular 
weight as compared to the EGFR antibody (Diagaradjane 
et al., 2008; Ryu et al., 2013). However, its use has 
provided different results, leading to a controversy across 
experiments and authors (Bhirde et al., 2009; Bunuales 
et al., 2011). The binding of EGF to EGFR induces the 
phosphorylation of the receptor promoting the activation 
of an internal signalling pathway involved in several 
processes, including cell proliferation. It was reported that 
treatments with cetuximab and EGF led to the inhibition 
and the activation of cell proliferation, respectively. 
Interestingly, some authors reported that no changes 
were observed in the phosphorylation basal status at the 
receptor and the post-receptor levels after treatment with 
EGF-conjugated nanoparticles (Zalba et al., 2016).

In a recent study, hollow mesoporous silica 
nanoparticles (HMSNs) were functionalized with EGF 
in order to selectively target colorectal cancer cells that 
overexpressed EGFR. HMSNs are one of the promising 

carriers for drug delivery due to several advantages like 
large surface area and high volume for drug loading. 
However, the non-ionic surfactant templated HMSNs 
often have limitations such as a broad size distribution 
and a defective mesoporous structure. In this work, 
HMSNs with large internal cavities were prepared by 
utilizing the Eudragit nanoparticles as the core template 
and an assistant in the self-organization of surfactant 
micelles. The HMSNs have uniform pore sizes (2.5 nm) 
and small diameters (120 nm) that facilitate the effective 
encapsulation of 5-fluorouracil. EGF conjugated HMSNs 
can specifically and efficiently target cancer cells with 
overexpressed EGFR (She et al., 2015).

EGFR targeting by peptide decorated nanoparticles 

Peptides as targeting ligands have numerous advantages, 
including large scale production by chemical methods, 
high specificity and affinity, and small size. Screening 
of peptide libraries produced by either phage display or 
chemical synthesis is the main strategy to select peptide 
sequences with increased affinities to a specific target. 
Phage display is more widely used to identify peptides 
that target a specific receptor and is adaptable to both 
in vitro and in vivo studies. Selected peptides have 
been used as molecular probes for imaging as well as 
therapeutics. Till date, various peptide ligands have been 
discovered for different types of receptors or cells, such as 
integrin receptors, tumour cells, thrombin receptors, and 
cardiomyocytes. Tumour-targeting peptides have been 
successfully conjugated to nanovesicles to deliver imaging 
agents, small-molecule drugs, and oligonucleotides to 
tumours (Ruoslahti, 2012; Zhang et al., 2012).

Recently, a novel 12 amino acids peptide, GE11 
(sequence: YHWYGYTPQNVI), was reported as a 
potent EGFR ligand (L. Cheng et al., 2014). GE11 
peptide specifically and efficiently binds to EGFR with 
a much lower mitogenic activity than that of EGF (Z. 
Li et al., 2005).We designed thermosensitive liposomes 
functionalized with anti-EGFR ligands for targeted 
delivery and localized triggered release of chemotherapy 
(Haeri et al., 2016). For targeting, an EGFR-specific 
peptide (GE11) was used. The prepared multifunctional 
nanoparticles were characterized with regard to cellular 
binding, uptake, and cytotoxicity studies using flow 
cytometry, live cell imaging, and cell viability assay 
on cell lines with different expressions of EGFR under 
normothermic and hyperthermic conditions. In our study, 
it has been shown that much lower number of cetuximab 
Fab̕ targeting moieties was required on the surface of 
thermosensitive liposomes as compared to GE11 to 
achieve similar EGFR binding (Haeri et al., 2016). 

Recent investigations have shown that GE11peptide 
as a single molecule had no detectable binding affinity for 
EGFR and the attachment of several ligands was needed 
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for specific and measurable EGFR binding (Abourbeh et 
al., 2012). GE11 binding affinity for EGFR was reported 
to be approximately 10–20 folds lower than EGF (Z. Li 
et al., 2005). 

Conclusion

In the past decade, rapid development has taken place in 
ligand-directed active tumour targeting of nanoparticles 
for cancer chemotherapy. EGFR-targeted nanoparticles 
can be used to deliver an imaging and therapeutic agent to 
EGFR-overexpressing tumour cells. In vitro and in vivo 
studies have demonstrated that EGFR specific ligand-
decorated nanoparticles can enhance accumulation and 
retention of drugs in the tumour tissue, increase targeted 
cell uptake, improve therapeutic efficacy, and minimize 
systemic side effects. Together, these research results 
highlight EGFR-targeted nanoparticulate platforms 
as being an effective therapeutic option for EGFR-
overexpressing tumours.
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