
Introduction 
Neurodegenerative diseases (NDs) including Alzheimer’s 
disease (AD), Parkinson’s disease (PD), Huntington’s 
disease (HD), frontotemporal dementia (FTD) and 
amyotrophic lateral sclerosis (ALS) are involved with 
progressive decrease in motor and/or cognitive function. 
These diseases are associated with selective neuronal 
susceptibility with degeneration in specific brain regions 
and abnormal protein deposition in neurons. Convincing 
evidence from genetic, neuropathological, cellular 
and biochemical studies and experiments with animal 
models shows that misfolding, oligomerization and 
accumulation of proteins in the brain is the cause of the 
disease. It is the main event that causes the pathological 
abnormality.1-3 Many proteins fold back into their original 
and biologically functional structure immediately after 
being produced. Intrinsically disordered proteins (IDPs), 
also referred to as natively unfolded proteins, lack 
inherently stable tertiary conformation.4 The ability of 
misfolded proteins to replicate and proliferate in large 
numbers plays an important role in the progression of 
brain disease. Although protein aggregation is distinct 
in different NDs, the process of misfolding proteins 
and their functions are remarkably similar.5 In general, 
protein aggregation forms a special structure called 
amyloid. It is characterized by a β-sheet structure 
that can aggregate into long fibrils, as well as convert 

proteins that have not yet been misfolded.6 Most proteins 
form amyloid fibrils under unfavorable biochemical 
conditions.7 Following formation, higher amyloid 
aggregates assembly are very resistant to degradation. 
The thermodynamics stability of amyloid formation 
also involves their ability to convert intrinsic proteins to 
amyloid morphology.8 In AD, misfolded proteins cause 
plaques and tangles. In PD and Lewy body dementia, they 
form Lewy bodies (LBs). Misfolded proteins are soluble 
nanoparticles that have the ability to spread to unaffected 
cells.9 They interfere with normal protein synthesis and 
degradation of nerve cells and appear to lead to cell death. 
At high concentrations, misfolded proteins tend to form 
large insoluble proteins. Protein aggregates have a toxic 
effect when they accumulate in cells above a certain level. 
Abnormal protein accumulation leads to progressive 
loss of neuronal structure and/or function, including 
neuronal cell death.10 

Common molecular and cellular processes that lead 
to NDs include protein misfolding and aggregation, 
mitochondrial dysfunction and oxidative stress, 
inadequate protein clearance, axonal transport 
disturbance, neuroinflammation, and RNA-mediated 
toxicity.11,12 Today, mechanisms involved in protein 
aggregation and the development of NDs are not clear 
at the molecular level. The purpose of this review is to 
evaluate the role of the misfolded proteins in NDs from a 
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molecular and cell-based perspective.

Some Factors Involved in Aggregation Behavior of 
Proteins in ND
Mutations
Several genetic and environmental factors could 
promote proteins misfolding and aggregation in various 
ND.13 These include gene mutations and promoter 
polymorphisms that can affect levels and conformation 
of protein. In fact, the inheritance of pathological genetic 
mutations is involved in onset and development of ND. 
For example, mutation in the MAPT gene encoding tau 
protein or other genes, such as C9ORF72 or GRN cause 
FTD.14 Mutations in genes encoding APP or presenilin 
(PSEN) resulting in early-onset familial forms of AD.15

Patients with early-onset PD have mutations in the 
gene encoding Parkin, DJ-1, or PINK1.16 Mutations in 
the SOD1, FUS or TARDBP (encoding TDP-43) genes 
are known to cause rare early-onset familial forms of 
ALS (fALS).17 Moreover, polymorphisms in the promoter 
region of disease-related genes may result in enhanced 
gene transcription or alternative splicing, protein levels 
and aggregation-prone transcript variant.18

The proposed molecular mechanism for NDs should 
always strive to explain how cumulative damage from 
hereditary/germline mutations manifests itself in highly 
specific neuronal loss after decades.19 The brain has 
been shown to undergo particularly high alternative 
splicing compared to other human tissues and also tends 
to follow clearer patterns.20 The results of alternative 
splicing may have important biological relevance in 
the brain. For example, pattern detection of receptor 
and channel isoform expression that is important for 
neurotransmission.21 Mutations play an important role 
in protein aggregation and can markedly alter protein 
stability, solubility, and aggregation tendencies.22 Further 
aggregation lead to amyloid fibrils, which deposit in 
tissues and are related with NDs.23 Alpha-synuclein (140 
amino acid) encoded by the SNCA gene on chromosome 
4q21. Although widely expressed within neurons, it is 
abundant at presynaptic terminals, indicative of a role in 
synaptic signaling. Rare point mutations of SNCA trigger 
dominant familial forms (early-onset) of PD. Fibrillar 
forms of α-synuclein have been identified within LBs that 
accumulate in hereditary and sporadic forms of PD.24

Tauopathy is a neurodegenerative disease in which 
the microtubule-associated protein tau is associated 
with numerous filamentous inclusion bodies in some 
neurons or both neurons and glial cells. MAPT (tau gene) 
mutations lead to hereditary cases of FTD characterized 
by abundant filamentous tau inclusion bodies. This 
evidence suggest that tau dysfunction is sufficient to 
trigger neurodegeneration and dementia. Orderly 
placement of tau on filaments may indicate disease-
causing toxic functions.25

In summary, genetic and molecular alteration occur at 
the subcellular level in most ND, as follows: mutations 
in DNA lead to various changes at the level of RNA 
processing and cryptic splicing suppression, formation 
of hairpin structures that trigger RNA silencing pathways 
and sequester proteins, formation of stable G-quadruplex 
(G-Q) structures that can form aggregates with RNA-
binding protein (RBPs), mutations in RBPs that affect 
their RNA processing functions, and formation of 
aggregation-prone polyglutamine (polyQ) and dipeptide 
repeat (DPR) proteins.19

Posttranslational Modifications
After protein synthesis, post-translational modifications 
(PTMs) of amino acids can increase protein diversity 
through additional functional groups (acetates, 
phosphates, various proteins, etc) and structural 
changes.26 Especially, phosphorylation has an important 
role in ND and seems necessary for protein aggregation 
and misfolding in ND. 

Development of AD is associated with extracellular 
plaque deposition of aggregated amyloid beta peptide 
(Aβ) and tauopathy due to intracellular neurofibrillary 
tangles composed mainly of hyperphosphorylated fibrils 
of the microtubule-associated protein tau.27 Tau protein 
in brain neurons contains rich phosphorylation sites 
that are targeted by various kinases. When tau is highly 
phosphorylated, its binding to microtubules is broken 
and the release of tau from microtubules promotes self-
association and aggregate formation.28 Aβ is thought to 
play many physiological roles, including synaptic activity 
regulation,29,30 but in AD it acquires toxic function, causes 
oligomerization and aggregation, and ultimately leads to 
formation of insoluble plaques.31,32 Furthermore, other 
PTMs including polyamination, glycation, truncation, 
and nitration are associated with the disease of protein 
misfolding.33 Cohen and colleagues have confirmed that 
tau acetylation as a PTM may regulate normal tau function 
suggesting the pathological role for tau aggregation in 
AD. They showed that tau acetylation at K280 could 
impair tau- interactions with micro-tubule and increase 
cytosolic tau pool availability for pathological paired 
helical filaments aggregation.34

A pathological feature of PD is the progressive loss of 
dopaminergic neurons in the basal ganglia, especially 
in the substantia nigra pars compacta.35,36 In addition, 
the main pathological features of PD are presence of 
intraneuronal proteinaceous inclusions called LBs, 
which are composed primarily of α-synuclein.37 α-Syn 
influence by PTMs, including phosphorylation, nitration, 
ubiquitination, acetylation, truncation, SUMOylation, 
and O-GlcNAcylation, which can lead to changes in 
protein structure, size or charge.38

Among the α-syn PTM, phosphorylation is the most 
studied subtype.39 Anderson et la showed that less than 4% 
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of α-syn was phosphorylated in the normal brain, while 
about 90% of α-syn is found to be phosphorylated at serine 
129 and 87 (S129 and S187) in LBs.40 Additionally, it has 
been also confirmed that α-syn could be phosphorylated 
at tyrosine 39, 125, 133, and 136 (Y39, Y125, Y133, and 
Y136).41

Several studies have demonstrated a potential role for 
ubiquitinated α-syn in the LB-like ubiquitin-positive 
formation in PD.42,43 Both in vivo and in vitro experiments 
revealed that α-syn ubiquitination with the E3 ubiquitin 
ligase SIAH (seven in absentia homologue) may enhance 
α-syn aggregation.44,45 Moreover, mass spectrometry 
analysis showed SIAH monoubiquitinates α-syn at 
different lysine residues (K12, 21, and 23) which were 
previously found to be ubiquitinated in LBs.46

Acetylation is another PTM that regulates gene 
expression, where acetyl groups co-bind to N-terminal 
amino or lysine residues, generally resulting in changes 
in protein stability. The level of acetylation is the result 
of a balance of activity between histone acetyltransferase 
(HAT) and histone deacetylase (HDAC). Maintaining 
optimal HAT/HDAC balance is critical for neuronal 
survival. The alteration of neuron protein acetylation 
and deacetylation homeostasis cause several pathological 
cellular processes which lead to NDs.47,48 

For example, the α-syn amino acid sequence contains 
a significant amount of lysine in patients with PD, which 
can be a target for N-terminal acetylation. A previous 
study has shown α-syn with acetylated N-terminus in 
the temporal and prefrontal cortex of patients with PD.49 
Although, other studies have also suggested the protective 
effect of acetylation on the α-syn pathogenesis.50

Other Factors 
In addition to the critical role of PTMs in proper 
folding and function of proteins, molecular chaperones 
also support conformal folding or unfolding of large 
or macromolecular proteins.51 Although molecular 
chaperones are essential for the cellular homeostasis 
and survival maintenance under stress and optimal 
conditions, most are activated by several stressors such 
as high temperature or changes in pH value or salt 
concentration.52 In response to cellular stress such as 
heat, higher level of protein misfolding may result in to 
protein aggregation. For instance, heat shock protein 
70 (Hsp70) contains a large ubiquitous family of ATP-
dependent molecular chaperones known to suppress the 
aggregation of several neuropathic proteins and their 
consequent toxicity in response to neuronal stressors 
such as NDs and stroke.53,54 

Concentration is another important parameter for 
protein aggregation. At higher the protein concentration, 
the possibility of aggregation increase. Protein-
protein and intramolecular interactions, particularly 
hydrophobic interaction, can produce aberrant protein 

structure. Above certain concentrations, some misfolded 
protein aggregates can represent ND.33,55

Conclusion
In this article, we collectively reviewed the important 
role of protein misfolding and aggregation in NDs. Here, 
we focused specifically for understanding the molecular 
and cellular mechanisms of protein misfolding and 
aggregation involved in NDs. Enhancing understanding 
of these underlying mechanisms can lead to the 
development of effective therapeutic strategy.
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