
Introduction
Epilepsy is one of the most common neurological 
disorders, afflicting 1% of the population. Currently, 
patients with epilepsy suffer from social problems and 
momentary lapses of consciousness. Absence seizures 
are general seizures, which highly occur in children 
between 4-12 years old and adolescents with juvenile 
absence epilepsy. The absence seizures appear in 
electroencephalogram (EEG) signals with particular 
spike-wave discharges (SWDs) with a frequency of about 
3 Hz and a short duration (5-30 seconds).1,2 

Wistar Albino Glaxo of Rijswijk (WAG/Rij) and genetic 
absence epilepsy rats from Strasbourg (GAERS) are well-
accepted experimental models of absence epilepsy.1,2 
Because of the similar pharmacological and electrical 

characteristics, these models are extensively useful for 
human absence epilepsy.3 

The EEG quantification is essential for three reasons. 
First, it is crucial to investigate the development of an 
antiepileptic drug. The dose of the drugs is directly related 
to the number of SWDs. So, SWDs detection can help 
assess drug efficacy.4 Secondly, new therapeutic methods 
such as surgical and deep brain stimulation (DBS) are 
more popular recently.5 The SWDs detection is the basis 
of these methods. If we identify the pre-seizure state, the 
appropriate stimulation pattern is applied at the right 
time. Thirdly, doctors require to score SWDs in long-
term EEG. This task is performed manually6 and is prone 
to error. To this end, automatic SWDs scoring would be 
highly appreciated, since it helps fast quantification and 
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facilitates clinical application techniques.7

There are very few studies in the literature related to 
automated SWD detection in animal models. Andrade et 
al8 proposed an offline SWDs detection framework based 
on the time-frequency analysis in the genetic model of 
absence epilepsy. The SWDs were detected using some 
features in certain frequency bands. Spontaneous seizures 
can be detected in the post-traumatic rat model of 
epilepsy.9 In this study, continuous long-term video EEGs 
were recorded to detect epileptic activity. The proposed 
method searched power peaks and then marked the onset 
of seizures. Sitnikova and colleagues10 used fast Fourier 
parameters and continuous Morlet wavelet transform to 
discriminate SWDs from sleep spindles in EEG signals 
from WAG/Rij model of epilepsy. They showed that 
EEG patterns of SWDs have different time-frequency 
parameters compared with sleep spindles. In Fanselow et 
al study,11 an automatic SWDs detection framework was 
developed based on EEG signals derivate. The SWDs 
were detected when the signals value derivate exceeds the 
threshold value. Another study12 introduced a method 
based on the amplitude values of EEG signals and the 
thresholding method. The method detected SWDs 
when EEG amplitude exceeded from absolute amplitude 
threshold. However, these studies are not based on the 
complex nature of the brain signal and cannot be used 
to identify the chaotic behaviors of the brain signal. 
According to the chaos and nonlinear dynamic theory, 
biomedical signals have complex behavior, and these 
methods are suitable for modeling them. There are several 
feature extraction techniques to identify the dynamic 
of chaotic signals. Fractal dimension,13,14 correlation 
dimension,15-19 entropy,20-24 Lyapunov exponent,25-28 and 
recurrence quantification analysis are common methods 
to analyze EEG signals. 

However, these methods quantify the global 
characteristics of phase space and cannot identify the 
details of phase space. So, introducing the features which 
can detect the details of phase space are more effective. 
We proposed a novel method to detect SWDs based on 
the two-dimensional phase space’s geometric features.29 
We showed that our proposed method had more 
outstanding results than previously published approaches. 
Application of the method in an animal research setting, 
however, has revealed some aspects that required further 
improvement. In particular, the method only introduced 
statistical features from two-dimensional phase space 
while EEG system has higher-order dimensions, and 
this reduction may lead to erroneous results. In addition, 
trajectory changes have dynamic behaviors, and we have 
to consider this issue in our method. In this study, we 
tackle this problem by presenting a novel method to track 
the changes in phase space trajectory.30,31 We assumed that 
the SWDs have geometry in phase space as well as in the 
time domain and geometrical characteristics are helpful 

in predicting and detecting absence seizures. Among the 
novelties are: (1) Introducing morphological features 
in high dimensional phase space from EEG signals, 
(2) Improving the detection method by modifying 
thresholding method using a dynamical threshold, and 
(3) Using a benchmark oscillator-like Lorentz system to 
investigate the robustness of the proposed features. First, 
we introduce the subjects and procedure of surgery and 
electrode implantation. In the second step, we present 
the phase space reconstruction and feature extraction 
methods. Finally, we discuss our results and compare 
the performance of the proposed method with existing 
literature. 

Materials and Methods
Ethical Consideration
This experimental study was done in the animal laboratory 
of Ferdowsi University, Mashhad, Iran. It was approved by 
the natural ethics committee (IR.NKUMS.REC.00.036) 
The animals were housed in pairs with free access to water 
and food. After surgery, they were housed individually. 
All procedures were done in accordance with the national 
guidelines for animal care and handling. Efforts were 
made to minimize the pain/distress experienced by 
the animals. Also, the least possible number of animals 
necessary to produce reliable data was used.

Subjects and surgery
All experiments were performed on 15 male WAG/Rij rats 
with at least 13 weeks of age (weight 300 ± 5 g). The rats 
were anesthetized with xylazine 11 mg/kg and ketamine 
110 mg/kg. Next, the skull was fixed with a stereotax, and 
cotton and alcohol were used to prepare the surface of 
the skull. In addition, phenylephrine was used to prevent 
bleeding. In all animals, a twisted Bipolar electrode was 
implanted on the frontal cortex (1 mm above Bregma 
and 3 mm from Lambda) and the reference electrode was 
implanted on the parietal cortex. An extra screw was used 
to fix dental cement. All coordinates were determined 
according to the stereotaxic atlas of Paxinos and Watson. 
The rats were allowed recovery for a week.

Brain Electrical Activity Recording
After recovery, each animal was kept in the individual 
brain electrical activity record cage. Next, the brain 
electrical activity electrode was connected to the recording 
system. The signals were recorded by 1 kHz sampling rate 
and amplified with PowerLab (AD Instrumentation Co, 
Australia). The recording was performed continuously 
for 24 to 74 hours. Figure 1 shows the coordination of the 
recording electrode, electrode implantation, and a sample 
brain electrical activity recorded.

Phase Space Reconstruction
The phase space is one of the effective methods in 
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biomedical signal processing. In the biological system, we 
can only identify the dynamics of the system with these 
observations because we do not have access to the system 
equations and only have observations of the system such 
as brain electrical activity. Taken theory32 explains that the 
phase space can be reconstructed with the time-delayed 
series of observations. According to this theory, if x(t) is a 
time series, the delayed phase-space vectors are estimated 
with the following equation:

( )
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Where τ is a time delay, and m is the embed dimension 

which can be calculated by the false nearest-neighbor33 
and the mutual information34,35 algorithm, respectively.

Feature Extraction
In this part, we quantify the trajectory of the state variable 
based on the geometrical properties of phase space.

Enclosed Volume (EV)
The EV quantifies the surrounded space by the trajectory; 
we introduce features to demonstrate the geometrical 
characteristics of trajectory in the phase space. 

Centroid
To calculate a centroid of a set of K points, the averages 
of their coordinates are calculated. The centroid in two-
dimension space was calculated using the following 
equations:

Where K is the number of points in the phase space 
and the coordination of each point and Cx and Cy are the 
centroid components in Cartesian coordination. 
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Center of Gravity
Center of gravity is calculated as follows:
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Where n is the number of samples, xi and yi are the 
coordination of each point in the Cartesian coordination, 
Gx and Gy are the center of gravity components and A is 
the polygon signed area:
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Occupied Space
Two quantifiers present occupied space according to the 
centroid and center of gravity: 
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Where ( )kx  is the trajectory vector, K is the number 
of samples, C and G present centroid and center of gravity, 
respectively. 
Two features characterize the variation of occupied space 

Figure 1. (a) The rat skull atlas and the coordinates of the 
recording electrode. (b) Bipolar, reference electrode, and extra 
screw implantation. (c) . A sample of recorded brain electrical 
activity includes SWDs with 3 Hz.
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according to the distance of samples of ( )tx  to the 
centroid (C) and center of gravity (G), respectively. These 
features are calculated as follows: 
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Where OCV and OGV characterize the variation of the 
convex hull in the attractor according to the centroid and 
center of gravity. 

Curvature
Curvature represents the complex behavior of the 
trajectory. Curvature vector is calculated by the following 
formula: 
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Where 1  v


 and 2v


 are the vectors between each sample 
and reference point, and ( )( ) K x t



  is the curvature vector. 
The curvature can be quantified by two quantifiers: 
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Where AK presents the curvature average of each 
trajectory sample and KV quantifies the overall changes in 
a trajectory. The value of AK increases when the attractor 
tends to complex shape. The variation of curvature is 
increased when the state of EEG signal was changed from 
normal to epileptic state. 

Seizure Detection Algorithm 
For detection of SWDs, a thresholding method for the 
features was applied. We developed the algorithm by 
applying an adaptive thresholding method, i.e., the 
parameters of thresholding were dynamically tuned 
by estimating the corresponding average values of the 
precursing indicators in a time window. 
 
Data Analysis
We evaluated our method according to the two aspects: 
First, we evaluated the features to investigate their abilities 
to introduce a chaotic quantifier. The appropriate chaotic 
quantifiers must have two features. First, the chaotic 

quantifiers should not be sensitive to the changes in 
the initial condition of the chaotic system. Second, the 
quantifier is changed significantly by the variation of the 
chaotic system parameters. In this study, the conditions 
were evaluated by the Lorenz system36 with the following 
equation:

                                                                                             (17) 
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Where X, Y, and Z are the state variables, and σ, r, β 
are the parameters of the Lorenz system. To investigate 
the sensitivity of the initial point, we used t test. The 
attractor geometry of a chaotic system is related to the 
changes in the trajectory behavior of the system. So, 
a geometrical feature is sensitive to the changes in the 
dynamic trajectory. An appropriate quantifier is invariant 
to the changes of the initial point. On the other hand, 
efficient quantifiers significantly change by changing the 
system parameters. Second, we assessed the performance 
of the SWD detection system by the accuracy and time 
prediction according to the different thresholds.

Result
Figure 2 shows the boxplot of each feature for different 

Figure 2. Boxplot of the Features for 100 Initial Conditions and 
Five Values of the Lorenz System.
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Lorenz system parameters (r) and 100-times iterations for 
random initial points. The results show that the distribution 
of the features of each condition is significantly separable 
from another parameter. We applied two-sample t test for 
each pair of parameters. Two-sample t test examines the 
null hypothesis that the population means related to two 
independent, random samples from an approximately 
normal distribution are equal. To use an unpaired t test, 
the population must have a normal distribution. To test 
the normality, the Jarque-Bera test was used. This test 
was applied to each distribution of the feature values for 
different Lorentz parameters. Jarque-Bera returns the P 
value that is larger than 0.05 if the feature has a normal 
distribution. The results indicate that most features had 
a normal distribution, and we can apply the two-sample 
t test. 

Figure 3 shows the results of the two-sample t test. The 

black box indicates that the P value of the t test for two 
pairs of the different parameter is less than 0.05 and the 
two distributions are significantly separable from each 
other. Almost all the boxes in the table for each quantifier 
are black and satisfy the hypothesis of two-test methods. 

In the next step, the time evolution in transition from 
pre-seizure state to epileptic seizure was investigated. 
The results showed that there were significant changes in 
the geometrical value. For instance, the time variations 
of four features with better statistical results were 
demonstrated in Figure 4. The results indicate that the 
value of the geometric features increased significantly in 
this transition, and the onset of SWDs is easily detected by 

Figure 3. The T Test for All Two Parameters for Geometrical 
Features From the Lorenz System. The black box indicates that 
features are independent.

Figure 4. Time Variation of Features in Transition From a Normal 
State to Absence Seizure for 940 ECoG Segments. (a) KV, (b) 
OGV, (c) AK (d) EV.
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using these features.
OGV, (c) AK (d) EV.

In the next step, the accuracy of SWDs detection 
and prediction time for different threshold values was 
calculated. Table 1 presents the maximum accuracy for 
each feature and prediction time in maximum accuracy.

Discussion and Conclusion
In this study, we proposed a strong method for offline 
prediction of SWDs. Table 2 comprises the result of 
previous SWDs detection studies on animal absence 
epilepsy and the proposed method.

This method can play an important role in detecting and 
predicting epileptic seizures. To apply suitable medication 
methods, a doctor needs to review EEG signals, which 
may take hours. In addition, to avoid the side effects 
of antiepileptic drugs designing a close-loop system is 
highly desired, and the real-time stimulation can be 
applied when a seizure occurs. Another application of an 
automatic detection system is designing a warning system 
to protect the patient from seizures during his life. The 
result shows that the accuracy of the proposed method is 
better than the previous approaches. This study focused 
on the genetic epilepsy model because it is the model of 

epilepsy and not the model of epileptic seizures such as 
acute chemical and electrical kindling. Because of the 
similar pharmacological and electrical characteristics in 
an animal model and human epilepsy, the results of these 
studies are more reliable and can be developed for clinical 
application. 

The main focus of this study was extracting geometrical 
features from phase space. The effectiveness of the 
nonlinear approaches is demonstrated in several 
studies.37-39 The results support this issue. The proposed 
algorithm is robust to the initial point changes and 
significant changes with the changes in system parameters 
and so the features can quantify the chaotic behavior. 
Similar to the studies on geometrical quantifiers, the 
geometrical feature was significantly changed in the 
transition from a normal state to epileptic seizures.

This article proposed a novel offline method. However, 
since few samples are needed to calculate the features, 
we can develop the method for online application. In 
addition, the threshold method is simple and fast with 
high accuracy, and we can use this method in online 
mode. Another limitation of this study is the low number 
of subjects. The excellent performance of this proposed 
algorithm opens new perspectives to develop automatic 
techniques in clinical settings. Future studies can focus on 
the other genetic model of absence epilepsy like GARES. 
Future studies can also search for a method that can be 
used in online applications.
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