
Introduction
The first practical use of robotics in medical science dates 
back to 19851. Following these systems’ improvement, 
robotics is used in several fields such as neurosurgery,2-9 
cell biology,10, 11 rehabilitation,12 orthopedic surgeries,13, 14 
laparoscopies,15 and cardiovascular surgeries.16-18 In recent 
years, minimally invasive surgery methods have attracted 
much attention. In robotic surgery, the system has divided 
into two parts: master device, controlled by the surgeon 
or the surgery operator, and the commands from this part 
are transferred to the second part, slave. The slave has 
consisted of robot arms that execute the surgery. One of 
the most popular systems is the da Vinci surgical robot, 
and one of its common models is multiport. This robot 
has three arms. Two of them hold the surgery parts, and 
the remaining one holds the endoscope.1, 19 The main 

problem of using multiport robots, especially in surgeries 
with deep target points, is the need for creating more 
piercing. Furthermore, there is a risk of collision of the 
robot arms with each other.20 A tool named VeSPA has 
designed for da Vinci robot, which has a multichannel 
port and is useful, especially in urology surgeries.14

One of the most common neurosurgeries is about the 
resection of tumors from the brain cortex, and it has 
performed in two ways. The first method is open surgery. 
In this method, a large amount of the skull opened, and 
the lesion directly removed from the brain. The second 
method is using surgical robots. In this method, a limited 
part of the brain in which the tumor exists has specified 
using the imaging method, image guide, and virtual 
reality. Then through a hole as small as possible, the 
tumor is removed from the brain.21, 22 One advantage of 
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the second method is the small surgical site’s small size, 
which results in less pain for the patient after the surgery, 
shorter recovery duration, and, therefore, fewer hospital 
costs.1, 20

Hu et al introduced a semi-autonomous surgical robot 
that can resection of a brain tumor.23 It should note that 
this robot has stereo visual feedback too. They used 
two plans to resection the tumor and compared the 
autonomous motion control method and visual end-
effector sensing for each plan. Chinbe et al. designed a 
finger-attachment manipulator system for a resection 
brain tumor which operates based on pulling force 
feedback24. Their focus was on robots with more accuracy 
and safe resection. Azarnoush et al. used a special 
manipulator for brain tumor resection in which safety 
has improved during resection by utilizing modulating 
resident force application25. Niccolini et al. proposed a 
platform for neuro-endoscopy, which results in more 
accuracy of robots both in autonomous and hands-on 
control methods by using an accurate tool26. Lefranc 
et al. also introduced a frameless robot for posterior 
fossa biopsy27. This proposed platform results in more 
accuracy and safety in comparison with normal biopsies 
in neurosurgery. Maddahi et al. built a robot-assisted 
micro-neurosurgery, which creates the optimal position, 
orientation, and force using a hand-controller in the robot 
workspace area28. Ross et al. designed a manipulator with 
two axes that operated the tumor resection by a cutting 
laser29. They used a feed-forward to provide automated 
soft tissue resection in these robots. 

Despite sensitivities in neurosurgery and several 
limitations in robot workspace, improving robots’ work 
efficiency by optimizing their joints is not studied before. 
Therefore, the present study attempts to answer this 
need in single-port minimal invasive surgery for brain 
tumor removal while preserving the accuracy and design 
considerations. This goal aims two types of single-port 
minimal invasive surgery robots have considered, and 
their performance has compared. 

Materials and Methods
According to the present study’s purpose, a single-port 
minimal invasive surgery robot is named robot type 
1 and has compared with the developed model of this 
robot named robot type 2. Robot type 1 has tubular 
housing in its arm and end-effector, containing two 
small manipulators (Figure 1). This tubular housing has 
a 20 mm diameter and enables a robot for translation 
movement along the horizontal axis. After skull drilling 
(Figure 1a) and placing a trocar, this tubular housing 
had placed to make a tumor pathway. It should note that 
the trocar diameter and endoscope of this robot are 20.2 
mm and 10 mm, respectively. This robot consists of two 
manipulators (Figure 1b). The first manipulator has 5 
degrees of freedom and allows for resection and ablation 

of tumors from the brain cortex (Figure 2 –Zoom A 
and B). These 5 degrees of freedom consist of 4 revolute 
degrees of freedom and one prismatic degree of freedom. 
Revolute degree of freedom is for end-effector proper 
access to all the tumor parts (Figure 2 –Zoom B). One 
prismatic degree of freedom had used for covering all 
the tumor volumes for accessing the tumor’s depth in the 
brain cortex. The second manipulator is called suction 
and has 4 degrees of freedom. This manipulator sucks 
the separated tumor parts and removes them from the 
brain. This manipulator has three revolute degrees of 
freedom for accessing all the resected tumor volume and 
one prismatic degree of freedom to remove a tumor from 
the skull. The diameter of these manipulators is 4 mm. It 
should note that the ablation manipulator has one more 
revolute degree of freedom than a suction manipulator, 
which is because of the installed gripper in the end-
effector of this manipulator. 

In robot type 2, at the junction of the manipulator to 
the tubular housing, instead of using three revolute joints 
like in robot type 1 (Figure 3 - Zoom A), 1 is a joint 
perpendicular to the other three revolute joints used. The 
important fact is that this new robot’s ease of operation 
or higher efficiency depends on its output and kinematic 
and kinetic functions, which will discuss in the following 

Figure 1. Schematic of brain tumor and single port minimal 
invasive surgical robots. a)  skull drilling and placing a trocar, b) 
robot component.

Figure 2. The manipulators of robot type 1 and its components.
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sections. 

Results
Transformation and spatial description
Forward kinematic analysis is one of the most important 
methods for a robot transformation description. 
Therefore, for both robot types, the table of Denavit-
Hartenberg (D-H) parameters was calculated (Tables 1 
and 2).

The transformation matrix derived from Equation 1 is a 
compilation of R3×3 and P3×3 matrices22, calculated for both 
robot types using forward kinematics.
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Equations 2 and 3 describe the transformation matrix 
for robots type 1 and 2, respectively. 

The transformation matrix had used for comparing 
orientation, spatial description, and location of type1 
and type 2 robots. By multiplying this matrix with robot 
end-effector location, initial location, and orientation 
calculated. 
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In these calculations, Sθ and Cθ are Sin(θ) and Cos(θ), 
respectively and head center is considered as the origin 
of coordinates. Thus, tumor location which is the final 
destination of the robot’s end-effector was considered 
in the same condition for both robot types at position 
[35, 35, 0]T (numbers unit is mm). The location of the 
initial origin for both robot types was compared due to 

Figure 3. The manipulators of robot type 2 and its components.

Table 1. The D-H parameters for ablation manipulator of robot type 1

i α i-1 ai-1 di θi

1 0 0 d1 0

2 0 0 0 Ɵ2

3 90 0 0 Ɵ3

4 90 0 0 Ɵ4

5 0 L1 0 0

Table 2. The D-H parameters for ablation manipulator of robot type 2

i α i-1 ai-1 di θi

1 0 0 d1 0

2 0 0 0 Ɵ2

3 90 L1 0 0
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equations 4 and 5. For accessing the same location for 
end-effector of both robot types with = [15o, 10o, 30o, 1cm, 
2cm]T [ 2θ , 3θ , 4θ , 1L , 1d ]T coordinates, the result is as 
follows: initial location of robot type 1 and robot type 2 
are x=14.1, y=-52.3, z=-41.6 and x=-34.2, y=29.3, z=55.0  
mm respectively (Equations 4 and 5). According to these 
equations, the distance traveled by robot type 1 and robot 
type 2 for accessing the same tumor is 68.2 and 71.2 mm, 
respectively. Therefore, although robot type 2 uses fewer 
joints and has a simpler mechanism, it has limited ability 
for spatial movement and transformation in comparison 
with robot type 1. According to Equation 6, during 
resection surgery robot type 2 damaged cerebral cortex 
tissue 58.9 mm3 more than robot type 1 for resection of 
ablated tumors. Since robot type 2 damages cortex more 
than robot type 1, using it may increase the chances of 
post-surgery damages in the patient which can cause a 
longer recovery process. 

0
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Jacobian matrix
The Jacobian determinant had used when making a 
change of variables when evaluating multiple integrals of 
a function over a region within its domain. The Jacobian 
can also solve differential equations at an equilibrium 
point or approximate solutions near an equilibrium point. 
For evaluating and comparing manipulators balancing for 
both robot types, their joints’ input needs to be analyzed 
and compared with each other. To do this, the Jacobian 
matrix for both robot types calculated. This matrix has six 
rows, and the number of its columns equals the number 
of that robot joints. The first three rows (Jv) derived from 
matrix P3×1 relative to joints variables (q) and the second 
3 rows derived from matrix R of each joint relative to 
another joint. Equations 7 and 8, show a Jacobian matrix 
for robot type 1 and type 2, respectively.

12 13 14

22 23 24

33 34
0 5

43 44 45

53 54 55

64 65

0 0
0 0
1 0 0
0 0
0 0
0 1 1

J J J
J J J

J J
J

J J J
J J J

J J

−

       =         

                               (7)

( )12 1 2 4 3 4 2J L C S C C Sθ θ θ θ θ= −

( )22 1 2 4 2 3 4J L S S C C Cθ θ θ θ θ= +

13 1 2 4 3J L C C Sθ θ θ= −

23 1 4 2 3J L C S Sθ θ θ= −

33 1 3 4J L C Cθ θ=

43 2 J Sθ=

53 2 J Cθ=−

( )14 1 4 2 2 3 4J L C S C C Sθ θ θ θ θ= −

( )24 1 2 4 3 4 2J L C C C S Sθ θ θ θ θ= − +

( )34 1 4 4 3J L C S Sθ θ θ= −

44 2 2 3J S C Sθ θ θ= +

54 2 3 2J S S Cθ θ θ= −

64 31J Cθ= −

45 2 2 3J S C Sθ θ θ= +

55 2 3 2J S S Cθ θ θ= −

65 31J Cθ= −

1 2

1 2

0 3
2

2

0 0
0 0
1 0 0
0 0
0 0
0 1 0

L S
L C

J
S
C

θ
θ

θ
θ

−

 −      =     −    

                                    (8)

Robot’s external loading, which is the tumor weight, 
should be applied in both robot types. According to a 
normal and minimum weight for a brain tumor, this 
number for each robot type considered being 0.5N, so 
that robots have compared in the same condition. Thus, 
both robots’ external loading matrix has considered being 
[0, -0.5 N, 0]T. Equations 9 and 10 are calculated from 
multiplying transpose of the Jacobian matrix of robot 
type 1 and robot type 2 with an external loading matrix. 
The results showed that joints input matrix for robot type 
1 and type 2 for establishing static balancing is [0, 0.27, 
0, 0.21, 0]T and [0, 0.38, 0]T, respectively. This means 
that for establishing static balancing in robot type 1, the 
second and fourth joints should engage, and in the same 
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condition, the second joint should be engaged for robot 
type 2. However, robot type 2 needs to endure 41 percent 
more internal loading than robot type 1 to supply static 
balancing, which results in more depreciation of the robot. 
If this robot’s vibration conditions have not designed well, 
it can cause several errors during surgery. While surgeries 
in the neuroscience field are very sensitive, these small 
errors may cause irreparable damages to the patient.
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0 0.8348 0.0638 0.7301 0 0
0 0.5442 0.0546 0.4219 0 0.5
1 0 0.1294  0.3833 0 0

,
0 0 0.6503 1.0636 1.0636 0
0 0  0.7597 0.4059 0.4059 0
0 1 1 1.8391 1.8391 0

TJ F J− −

   −      − − −         − −   = = ×                       

0
0.27

0
0.21

0

      =        

                                                                                              (9)

0 3

0 0.6503 0
0 0.7597 0
1 0 0
0 0 0.6503
0 0 0.7597
0 1 0

J −

 −  −    =         

, F3= 0 3

0
0.5
0
0
0
0

TJ −

   −    ×         

=
0

0.38
0

        

  (10)

Discussions
After analyzing and comparing joints’ inputs from both 
robots to establish static balancing, motion analysis 
compares these two robots described in this section. Static 
balance refers to the ability of stationary on the object 
to its balance. This happens when the object’s center 
of gravity is on the axis of rotation. Whereas dynamic 
balance is an object’s ability to balance while in motion 
or when switching between positions First, the 3D model 
for these two robot types has designed using CATIA 
Version 5R21 software (Dassault Systems, Waltham, 
Massachusetts, USA) (Figures 2 and 3). These models had 
transferred to MSC Adams Version 2018 software (MSC 
Software Corp, Santa Ana, California, USA) for motion 
simulation. Computer simulation is a common method 
in biology field analysis30-39. Therefore, in this study, two 
robot types were compared using Euler-Lagrange, kinetic, 
and kinematic equations in MSC Adams software. Figure  
4 shows that in the same condition, maximum velocity in 
the contact location of the end-effector with the tumor 
for robot type 1 is 1.7 times more than the maximum 
velocity for robot type 2. This shows that robot type 1 is 
more effective than type 2. Motion period in robot type 1 
has two peaks, while robot type 2 has only one peak. This 
means that robot type 2 has a better kinematic range, but 
robot type 1 can move more delicately, especially during 
ablation.

The kinetic view shows that the maximum end-effector 
force of robot type 1 applied to the tumor is more than 
1.8 times than in robot type 2 (Figure 5). This means that 
ablation is more comfortable in robot type 1 because, in 
the same conditions, robot type 1 can perform ablation 
80% better than robot type 2. On the other hand, the 

maximum moment for both robot types is the same with 
less than a 1% difference (Figure 6). This means that the 
end-effector’s output power during ablation and resection 
is the same for both types. Moment graph in robot type 2 is 
linear, while this graph is parabolic in robot type 1. Linear 
moment graph in robot type 2 is a significant disadvantage 
in these robots during surgeries since it prevents smooth 
motion for the robot. Therefore, this issue turns out to be 
a significant weakness of robot type 2. 

Figure 4. Comparison of velocity diagram for end-effectors of 
robot types 1 and 2. 

Figure 5. Comparison of force diagram for end-effectors of robot 
types 1 and 2.

Figure 6. Comparison of moment diagram for end-effectors of 
robot types 1 and 2.
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Conclusion
Robot type 1 and robot type 2 have almost the same end-
effector output power for ablation and resection. On 
the other hand, robot type 2 has a more straightforward 
mechanism, fewer joints, and a better kinematic range 
than robot type 1. However, the results of this study show 
that for ablation and resection of a brain tumor, it is better 
to use single port minimal invasive surgical robots type 1. 
Because in the same conditions, the damaged volume of 
cerebral cortex tissue during resection is more for robot 
type 2, which results in post-surgery risks. Moreover, 
robot type 2 needs more internal loading in its joints 
for establishing static balancing. Robot type 1 has more 
smooth motions while it has better performance for 
ablation by 80%.
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