
Introduction
When a person performs a reaching movement, he/she 
chooses a unique trajectory among an infinite number of 
possible ones. It has suggested that the central nervous 
system (CNS) optimizes arm movements to reduce some 
kind of cost functions.1-3 Cost functions usually contain 
movement-related variables that should optimize during 
the movement.4 Some computational control models have 
shown that CNS generates a set of motor commands to 
optimize cost functions.5-10 These models predict the arm 
trajectories the same as the experimental data, but they do 
not describe the process of learning. 

The present paper discusses an optimal learning 
control method based on reinforcement learning (RL). RL 
acquired an optimal control strategy through a trial-and-
error process with no explicit “teacher.”11 RL algorithms 
are considered as a model for Dopamine-based learning 

in the brain,12 where the dopaminergic projections from 
the substantia nigra to the basal ganglia functions as the 
prediction error. 

The innovation of this study is to use the FGIHM 
model as an adaptive muscle model13 and control it 
by an RL method that is a model of brain function. 
Modeling of the CNS and the muscle-skeletal system is 
a step forward to understanding the complexity of the 
system. This knowledge can help clinicians soon to treat 
neurodegenerative diseases.

In a study,14 this classical RL algorithm applied to 
implement human arm movement. Major drawbacks 
of Classical RL in the biological system (human arm) 
are their requirements for many trials during learning 
procedure to achieve a simple point-to-point motion. 
In other words, the computational cost is so high, and 
the simulation process takes a long time. To overcome 
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the computational cost, a method of RL, as Q-learning15 
was proposed. The Q-learning technique is one of the 
RL methods that utilize the action-value function. The 
action-value function gives the expected utility of taking 
a given action in a given state and following a fixed policy 
after that.16 Recently, a method of Q-learning, multi-
agent state action reward state action (MA-SARSA),16 was 
introduced to increase the convergence of system states 
and avoid the local optima traps. This approach takes 
advantage of continuous reward functions to improve 
the learning speed in which a classical RL with discrete 
rewards does not.16 Another advantage of MA-SARSA 
is overcoming combinatorial explosion through multi-
agents that are learning separately. The combinatorial 
explosion happens when multiple actuators are needed 
to control a complex agent in a dynamical environment 
optimally.

In other research combining an artificial bee colony 
algorithm called the BCR algorithm is used to control 
the two-link arm with 6 muscles.17 The chaos phenomena 
may occur in two-link arm control based on the RL 
algorithm by changing parameters of muscles.18 Another 
method to determine the muscle activity is muscle 
synergy.19 Some research to understanding the function of 
the neuromuscular system has used in anthropomorphic 
systems.20

In this paper, a reaching movement by a two-link 
arm with 6 fuzzy-genetic muscles has investigated. The 
authors previously showed that Zajac’s muscle model is 
unable to take account of planar movement details during 
the experiment because of few tuning parameters.13 In the 
proposed muscle model, 3 fuzzy parameters are added 
to Zajac’s model to overcome the mentioned drawbacks. 
In order to validate the approach, an experiment is 
conducted on three right-hand male subjects (mean age 
27), and tuning the model with a genetic algorithm (GA). 
Then MA-SARSA algorithm is used for finding each 
muscle activation function. The results show that: (1) 
MA-SARSA can control this model with the redundancy 
of responses for reaching movement with settling time, 
rise time, and peek overshoot the same as a human arm 
reaching movement. (2) RL can yield the activation 
level of muscle the same as the one extracted from real 
electromyography (EMG).

Materials and Methods 
The Kinematics of Muscle-Joint Space
The two-link arm model with 6 muscles has shown in 
Figure 1 (This model is a simplified model of the human 
arm in horizontal plane movements(x)). To simplify the 
model: (1) the movements of the arm are bounded to the 
horizontal plane. (2) The effect of gravity has omitted. (3) 
The frictions of joints are linear. (4) The mass effect of 
each muscle has not considered.

The geometrical relationship between the length of 

muscle groups and their connection coordinates is given 
as follows21:
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where MLi denotes the length of each muscle, (θ1, θ2) 
are the joint angles. a1∼8, b1∼4 represent each position 
at which the muscles connect to the bones. The time 
derivative of equation (1) can be expressed as follows:

( ).l Q θ θ= 

(2)

where 6 1l ×∈  is the muscles contractile velocity vector, 

Figure 1. The Two-Link Arm With 6 Muscles. The following 
muscles used in this model: a single-joint flexor and extensor at 
the shoulder (ML1& ML2: Pectoralis and deltoid) and the elbow 
(ML3 & ML4: biceps long head and Triceps Brachii medial-head) 
and also two double-joint muscles spanning both the shoulder 
and elbow joints (ML5 & ML6: biceps short head and triceps long 
head). The letters (ai, bi) mark the coordinates of the origin and 
insertion points for each muscle group.21
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2 1θ ×∈   is the joints angular velocity vector and 
( ) 6 2Q θ ×∈ represents the jacobian matrix from the 

joint space to the muscle space which is as follows21:
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The relation between muscle forces and joint torques 
can be expressed as follows:

ô WF= (4)

where 6 1F ×∈  is the vector of muscle forces, 2 1τ ×∈
is the vector of joint torques and ( )TW Q θ= from Eq. (3).

The Modeling of the Two-Link Arm in the Horizontal 
Plane 
The following relation for the two-link planar arm has 
existed if Lagrange’s equation used:

( )
¨
( , )                       M q v q q G q τ+ + =

(5)

where M is the inertial matrix of the arm, V is 
the nonlinear term which includes the Coriolis and 
centrifugal force; τ is the input torque for arm joints, 
and G presents part of the moment encountering gravity 

force.22 Substituting (4) in (5), yields:

( )
¨
( , )M q v q q G q WF+ + =

(6)

where F is the force of the 6 muscles, and W is the 
Jacobian matrix from the joint space to the muscle space.

Experimental Setup and EMG Signal Processing to 
Obtain Muscle Activation
In order to set parameters of the muscle model for each 
person, EMGs, shoulder joint, and elbow joint angles have 
been recorded simultaneously by the BIOPAC system, 
Model MP150.23

Each subject has asked to sit behind a special table. The 
height of this table is adjustable that the shoulder and the 
person’s body meet the 90o angle (Figure 2).

Three healthy subjects have tested in this experiment 
(male subjects aged from 21 to.27 All the cases are right-
hand and without neural-muscular problems. Subjects 
have asked to perform the task without any concentration 
to minimize the co-activation of antagonist’s muscles.

Ag-AgCl surface electrodes have used to obtain EMGs. 
For bipolar recording, the electrodes of 8 mm (8 mmAg–
AgCl BIOPAC-EL208S) diameter were attached to the 
subject’s skin.23 The places of electrodes are used.24,25 
EMGs has recorded from muscles of short biceps head 
(BSH), long biceps head (BLH), Triceps Brachii medial-
head (TRIA), long triceps head (TRIO), pectoralis major 
(PMJ), and deltoid (DEL). Besides, the angles of the elbow 
joint and shoulder recorded by the electrogoniometer 
(Figure 3).

The EMG signals amplified by 5000 gain20 with a 
sampling rate of 1 kHz. The recording duration was 15 
seconds. There was 20 seconds rest between recordings. 

Figure 2. The Experimental Set up for the Simultaneous 
Recording of Electromyogram Signals, Elbow Joint, and Shoulder 
Joint Angles.

http://journals.sbmu.ac.ir/Neuroscience
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Subjects have asked to move their hands between 2 
marked points. The distance between the start point and 
endpoints is 50 cm.

In order to obtain normalized muscle activation level 
(NAL) from raw EMG, the following steps have done27: 
(1) A high-pass filter. (2) Full signal rectification (absolute 
value). (3) A low pass. (4) Signal normalization to the 
maximum EMG of each channel. Figure 4 shows the 
block diagram of the NAL method. The raw EMG signal 
with arbitrary amplitude has mapped into a normalized 
signal in the range of zero to one.

The above procedure has applied to a biceps signal, 
which has shown in Figure 5.
 
Enhancement of Zajac’s Muscle Model With Fuzzy 
System
A Zajac-type muscle model is used to generate muscle 
force.28 According to this model, the muscle force (Fmuscle) 
is the sum of active one (Fα) and passive one (Fp) as 
follows26:
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Where α is the muscle activation level of the muscle 
in the range of 0–1 (0 for passive muscle, 1 for fully 
activated muscle), Fmax is the maximum force of muscle, 
lo is the optimal fascicle length. The exponential shape 
determined by the variable Ksh, which has set Ksh = 3. 
Finally, the output Fmuscle depends on the velocity, Fα and 
Fp as following26: 

                                                                                        (8).
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where α1 =0.80, α2=0.50, α3=0.43, α4 =58 s/m. The above 
relation investigated by Zajac.28 In order to enhance the 
Zajac model, 3 fuzzy scaling coefficients added to Fp, Fα 
and Fmuscle. The Fp and Fα coefficients are dependent on 
length, and the Fmuscle coefficient is dependent on the 
velocity of muscle length. By applying these coefficients, 
the tuning parameter of the model is increased (by setting 
fuzzy scaling coefficients to one, the relation reduced to 
Zajac’s muscle model). 

In order to calculate the coefficients, a fuzzy system 
designed with Mamdani inference system (Figure 6).28 
The fuzzification and defuzzification are performed by 
Gaussian membership functions as follows:

( )
( )2

22; ,      
x c

f x c e σσ
− −

=                                                    (9)

This function has 2 parameters (c and σ), which are 
determined by the GA.

Tuning the Fuzzy Muscle Parameters by Genetic 
Algorithm
A GA method has used to modify scaling fuzzy coefficients 
of the model (section 2.4). These coefficients change 
based on input and output membership functions of 
the model. Membership functions depend on the length 
and muscular contraction velocity. GA adjusts muscle 
coefficients, which are muscle parameters for mapping 
EMG to elbow and shoulder joint angles.

Figure 3. The Two-Link Arm With 6 Muscles. In this figure the 
following abbreviations are used; biceps short head (BSH), 
biceps long head ( BLH ), Triceps Brachii medial-head (TRIA), 
long triceps head (TRIO), pectoralis major (PMJ), and deltoid 
(DEL).25,26 

Figure 4. The muscle activation level is estimating from raw EMG.27
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Control of the Modeled Arm Based on Reinforcement 
Learning Method
In order to control the model, MA-SARSA is utilized.31 
The block diagram of this algorithm has shown in Figure 
7. In this method, agent updating is performed based 
on receiving rewards and punishments from system 
conditions and applying them to all of the agents and 
adjusting each one separately.

or using this algorithm, the reward functions have 
defined as follows:

                                                                                 (10)
n

âR eward
1 d

=
+  

where β is a gain that controls the magnitude of the 
reward, d is the distance from the goal position, and n 
is the shape factor parameter. MA-SARSA is using a 
continuous penalty function for every action that does 
not support the goal as follows: 

                                                                                     (11)( )/ 1- n nPunishment d v dβ β ∫− += −
 

where   is the bias term, and v  is the velocity of the 
tipping arm.32

Simulation Procedure
The two-link arm model with 6 fuzzy-genetic muscles 
(TLA6FGM) simulated in Simulink and SimMechanics 
toolbox of MATLAB software: MATLAB/Simulink/
SimMechanic 2008 (ver 7.6.0.324). For solving differential 
equations, Runge-Kutta, with the constant step of 0.01 
second, is used. The GA preceded 800 iterations, and 
in the 100th and 200th iteration, random noise added to 
its output, and the fitness function has been set based 
on mean square error. Physical parameters of arm and 
muscle connection points derived from.21 Three subjects 
used, and they have asked to do extension and flexion in 
the horizontal plane.

Before implementing the RL method, first, the 
TLA6FGM was tuned for each subject. Finally, the tuned 
TLA6FGM controlled with the RL algorithm. The RL 
algorithm, based on an MA-SARSA, has performed for 
1500 episodes, which has 1500 steps.

Results
In Figure 8, the proposed model of the arm with 6 fuzzy 
muscles controlled by two controllers; state feedback 
(PID) and RL. Figure 8a shows the RL controller 
superiority over the state feedback controller in Figure 8b.

The angles and angular velocity of the model controlled 
by RL and state feedback have shown in Figure 9. The 
dash (--) lines came from the experiment, and the red line 
is RL controller responses, and the blue lines are for the 
state feedback.

Figure 10 compares the reaching distance of the tip in 
the 2 controllers, and the error estimated based on the 
Euclidean distance from the target.

In Figures 11 and 12, the activation level of the RL 
controller and state feedback compared for every 6 
muscles.

Figure 5 . (a) elbow joint angle, (b) biceps EMG, (c) rectified EMG 
signal, (d) applying the low pass filters with cut off frequency 15 
Hz, and (e) the normalized form of the fourth diagram.

Figure 6. The Proposed Fuzzy Muscle Model. This model has 
based on the Zajac muscle model with three fuzzy coefficients.29 

Figure 7. The Basic Model of the MA-SARSA.31

http://journals.sbmu.ac.ir/Neuroscience
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In Figure 13 the trace of the two-link arm with 6 models 
controlled by RL has shown. Figures 13a and 13b show 
arm motions with 500, and 1500 trails, and Figure 13c 
shows the tangential velocity profile of the hand from 
time 0-0.52 seconds. 

Figure 14 shows the robustness of MA-SARSA and 
PID-GA under the disturbance field, which applied to the 
tip of the arm. 

In order to have better insight into the arm movement, 
the virtual reality of MATLAB has used to demonstrate 
the performance of the model. Figure 15 shows the 
postures of the arm in different viewpoints.

Conclusion
In the present paper, a fuzzy-genetic muscle model based 
on Zajac’s model was proposed (FGMZM). The essential 
advantages of this model are: (1) FGMZM is more robust 
than Zajac to the input noise. (2) It can be customized 
depending on the number of adjustable parameters. 
FGMZM has been used to model the two-link arm with 6 
muscles. Finally, the arm model has controlled with MA-
SARSA algorithm, and the results have compared with 
the PID-GA state feedback control algorithm.

In a comparison between the MA-SARSA method 
and the PID-GA state feedback controller (Figure 8), the 

MA-SARSA has better settling time (less than a second 
like human reaching arm movement) than the PID-GA 
controller (more than 5 seconds).

Moreover, MA-SARSA does not have any peek 
overshoot (Figure 9). This comes from a speed regulation 
process in MA-SARSA, which is similar to a bell-shaped 
curve (Figure 13c). The speed pattern at the beginning 
and the end of the process is low, but in the middle, the 
motion speed is high. In PID-GA state feedback, peak 
overshoot has always seen because this controller utilized 
the error correction method for controlling procedure. 

Disturbance effects to the tip of the arm and its drift 
from the no-load trajectory has shown in Figure 13. 
MA-SARSA has better robustness to the noise than the 
PID-GA state feedback controller because MA-SARSA 
changed the controller structure. Structural changes come 
from the learning process of trial-and-error, which allows 
the controller to study all the possible conditions.

The effect of the learning process on the reaching 
movement has illustrated in Figures 13a and 13b with sets 
of weight parameters after the 500th and 1500th trials. At 
the early phase of the learning (500th trial), the tip reached 
the target, but it passed away because the speed of tip at the 
reaching point is not acceptable. As the number of trials 
increases up to 1500, MA-SARSA can reach the goal with 
suitable cost function (Figure 13b). The velocity profile is 
almost bell-shaped, and if the number of trials increases, 
the velocity profile became smoother bell-shape typically 
(Figure 13c), and the hand trajectory tends to follow an 
approximately straight line.

The MA-SARSA controller drives out different 
parameter sets in which all of them achieved the reaching 
movement goals. Among them, there is a specific set 
that matches mostly to the biological controller. Hence, 
MA-SARSA has the capability of modeling a part of the 
brain named basal ganglia,32 which plays a vital role in the 
skilled movement.

Tahara et al suggested a task-space feedback for 
controlling two-link arm driven by 6 muscles.21 In 
comparison, when the arm reaches the target based on 
the task-space feedback control, it has to swing around 
the target, and sometimes overshoot has happened. This 

Figure 8 . End-Point Reaching Movement From (0.2192, 0.5592) 
to (-0.14, 0.55). The left two graphs belong to the X and Y 
position in MA-SARSA controller, and the right Colum two 
graphs belong to the state feedback controller. 

Figure 9. The Angles and Angular Velocities of the 2 Joints. a) 
The PID state feedback, b) The reinforcement learning controller.

Figure 10. Endpoint Reaching Task Error . The right graph is 
related to the reinforcement learning controller, and the left one 
is related to the state feedback controller.

http://journals.sbmu.ac.ir/Neuroscience
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Figure 11. The Activation Level of the RL Controller for Every 6 
Muscles.

Figure 12. The Activation Level of (PID-GA) State Feedback for 
Every 6 Muscles

Figure 14. Robustness Analysis. Two-link arm model with 
6 muscles at the 1500 trail in the learning under disturbed 
conditions to the tip is showed. The horizontal axis shows the 
amplitude of the disturbance, and the vertical axis shows the MSE 
error of the trajectory from the normal condition trajectory. 

Figure 13. Reaching Motions During the Learning Process. Upper 
and lower plots in each of (a), (b) illustrate arm motions and 
tangential velocity profile of the hand from time 0-0.52 seconds. 
(c) Shows tangent velocity of hand movement after 1500 trials.

Figure 15. Graphical Representation of arm in Virtual Reality of MATLAB 
Software.

http://journals.sbmu.ac.ir/Neuroscience
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phenomenon has not seen in the human arm movements. 
In this sense, the RL control method is more reliable 
with the reality of human arm behavior than Task-space 
feedback control.

For further investment, it has suggested using the 
biological controller in a hierarchical structure to study 
the controlling procedure of the human brain more 
precisely. Besides, an experimental setup should design to 
implement and validate such a structure.

The virtual reality of MATLAB has a few block sets 
which are not proper for human movement demography. 
Therefore, the authors define some new block sets for 
animating human movements. In the future, this toolbox 
will be completed and presented for other research 
collogues to invest the human body movements.
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