
Introduction
Indeed, emotions play a crucial role in our daily life and 
communication including human-human and human-
machine interaction. According to recent studies, 
emotions and emotion recognition have used in numerous 
areas such as education, health, decision making, 
robotics, rehabilitation, driving assistance, and many 
more. Emotions might be considered seemingly simple 
at first glance. However, they are still unknown regarding 
the origin and their mechanisms. Emotion regulation 
considered one of the most complex brain processes since 
it ultimately relates to time, location, context, culture, 
and language. Our knowledge of emotions is limited, 
and there is no clear definition of the different feelings 
one can experience. Researchers from a large number of 
interdisciplinary fields such as psychology, biomedical 
engineering, robotics, and many more have tried to 
develop and enhance emotion classification systems with 
the aim of analyzing, interpreting and detecting human 
feelings. Despite considerable attempts in this area, 
emotions and emotion recognition have remained largely 

unexplored,1,2 which motivate us to study emotions in this 
paper.

There are 2 major ways to describe emotions called 
discrete and dimensional models. In the discrete view, 
emotions can categorize in previously defined states such 
as fear, sadness, happiness and so on. However, in the 
dimensional perspective emotions are described by at 
least 2 factors: arousal and valence. Human feelings can 
represent onto a 2D plane where there is x-axis (valence) 
and y-axis (arousal). In some studies, it mentions that the 
dimensional model can better represent emotional states 
than the discrete one.3 Therefore, the dimensional point 
of view applied in this study. Figure 1 shows the arousal-
valence plane and also some basic emotions on it. As can 
be seen, the arousal and valence factors vary from positive 
to negative and calm to exciting, respectively. Emotional 
states can easily define in 4 different quadrants (Q1-
Q4) including high arousal-high valence (HAHV), high 
arousal-low valence (HALV), low arousal-low valence 
(LALV) and low arousal-high valence (LAHV).

In recent years, several modalities such as facial 
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expression, speech and body gestures have been employed 
to classify emotions. Though sometimes accurate, the 
reflected emotions are usually subjective. Although these 
modalities have produced significant results, they are 
sensitive to social masking. These restrictions unlock 
the way to recognizing emotions through physiological 
signals. On the contrary, physiological signals such as 
electroencephalogram (EEG), electrocardiogram (ECG), 
skin temperature and galvanic skin response (GSR) 
are affected by emotions and controlled by the central 
nervous system (CNS). Based on,4 feelings originate from 
the brain’s response to physiological changes and cannot 
control by individuals. So these physiological emotion 
cues can truly reflect emotional states. Simple to record 
and cost-effective, EEG-based emotion recognition has 
been attracting a great deal of attention from researchers 
working in different fields in recent years. EEG seems 
to be less invasive, with better time resolution than the 
other physiological measures. In general, EEGs have 
been broadly employed to study brain activity related 
to effective responses. EEG has been used in many 
emotion recognition systems as it can reflect emotions 
more precisely and reliably at the higher time, spatial and 
frequency resolution. Also, EEG can continuously detect 
changes in emotions.5,6 In this study, we try to analyze 
EEG in order to classify emotions accurately.

Thanks to the advent of emotion recognition methods, 
it is now possible to record and analyze EEG in natural 
settings. This development has produced a new trend 
that integrates human-machine interfaces (HMIs) with 
emotional factors.7 Physicians and psychologists are now 
able to diagnose and treat people’s mental disorders like 
depression, autism, and many more. Employing these 
interfaces. Figure 2 illustrates the emotional brain-
computer interface system. Emotional brain-computer 
interfaces include 5 main steps. First, individuals exposed 
to before-designed stimuli based on a protocol. EEGs 
recorded, and then the raw signals will be preprocessed 
to eliminate noise and artifacts. Some significant features 
are then extracted and fed into a classification model. A 
classifier (or maybe a combination of classifiers) will train 
according to the selected attributes. After recognizing an 
individual’s current emotions, feedback can be carried out 
to react to the users. This procedure might be online or 
offline.7 We can conclude that emotions can be reflected 
and recognized through EEG processing, which suggests 
the considerable importance of EEG-based emotion 
recognition systems.

On the other hand, there are several reasons why EEG-
based emotion classification is challenging, like unclear 
boundaries for emotions and subjective opinions towards 
human feelings. Besides, there is no ‘ground truth’ for 
emotions to label EEGs, and also EEG patterns vary 
from person to person in different emotions. Moreover, 
emotion classification systems are mostly inaccurate and 
subject-dependent. It means that finding stable features 
and designing precise models with high classification 
performance is still important. Nonlinear analysis is an 
appropriate way to know more about complex systems like 
brain and emotions. Considering the chaotic and nonlinear 
behavior of EEG, simple time and time-frequency 
analyses are not able to fully extract and represent EEG 
features and behavior.8 Employing nonlinear models for 
emotions and feelings is not just about EEG processing. 
Jafari et al used chaotic models to simulate love, hate, etc.9 
In this study, we focus on reconstructing EEG in the phase 
space and extracting interactions between components 
in different emotions. Global information related to 

Figure 1. Arousal-Valence Plane for Emotions With Some Basic 
Emotions on it. The horizontal and vertical axes describe valence and 
arousal respectively.

Figure 2. Emotional Brain-Computer Interface.
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emotional states also achieved in this work. Several 
studies have been conducted in affective computing 
through EEG nonlinear analysis with the aim of emotion 
recognition. Some surveys introduce EEG-based emotion 
classification in detail. Almost all studies in this field 
have claimed that chaotic features are quite effective in 
emotion recognition.10-12

In recent years, several articles including engineering 
approaches to automatic emotion classification using 
EEG nonlinear characteristics (chaotic behavior) and 
pattern recognition methods have been published.13 
Nonlinear analysis has employed in numerous fields such 
as medicine and biomedical engineering over the past few 
years. In particular, the nonlinear analysis approaches are 
effectively used to investigate EEGs and the dynamics of 
the complex underlying system, and it is quite clear that 
the EEGs exhibit significant chaotic behavior. Non-linear 
analysis helps us to represent and recognize the irregular 
behaviors which exist in the system. Numerous nonlinear 
attributes such as embedding dimension (ED), fractal 
dimension (FD), correlation dimension (CD), detrended 
fluctuation analysis (DFA), approximate entropy (ApEn), 

multi-scale entropy (MsEn), Shannon entropy (ShEn), 
permutation entropy (PerEn), largest Lyapunov exponent 
(LLE), Lempel-Ziv complexity (LZC), recurrence 
quantification analysis (RQA) and Hurst exponent (H) 
have been widely employed to characterize EEG.13-19 These 
chaotic features are more likely to reflect and represent 
realistic information about the physiological state of the 
CNS which is inherently complex and nonlinear.

Due to the importance of emotion recognition through 
nonlinear analysis, we review some significant studies 
in this area. EEG is claimed to be able to provide more 
information related to emotions than other physiological 
variables.20 Although emotion recognition through 
EEGs seems complicated because of the reasons as 
mentioned earlier, some recent works have managed to 
discern different emotional states from EEG. EEG has 
characterized from both the linear and nonlinear points 
of view. However, more relevant insights have provided by 
nonlinear analysis.21 Some studies have reviewed recent 
studies related to EEG-based emotion classification 
through nonlinear analysis.12,22-24

Table 1 represents some previous emotion recognition 

Table 1. Previous Studies on Emotion Recognition Using Nonlinear EEG Analysis

Database Stimuli #Chan. #Part Features Classifier Emotion States
Classification 

Accuracy
Ref.

DEAP Video clips 32 32
CD, FD, RQA,

ApEn
Dempster-Shafer theory 

of evidence
Arousal-valence plane 

(4 classes)
91% 25

- Music 19 5 CD t test
Positive and negative 

valence
- 8

DEAP Video clips 32 32 CD, FD, SaEn, ApEn Self organization map HA, HV, LA, and LV 65% 26

- Video clips 19 40
Bispectrum, Power Spectrum, 

Wavelet, ApEn, H
SVM HA, HV, LA, and LV 60% 27

- Pictures 54 5 Statistical Features, CD
Quadratic discriminant 

analysis

Positively excited, 
negatively excited, 

and calm
66% 28

- Video clips 62 6
Wavelet Transform, Power 

Spectrum, ApEn, ED, H, FD, 
CD

SVM
Positive and negative 

emotions
85% 29

DEAP Video clips 32 32 SaEn SVM
Positive and negative 

emotions
80% 30

- None 19 45
DFA, Power spectrum, FD, 

CD, LLE,
Linear discriminate 

analysis
Depression 90% 31

- Video clips 62 20
Spatial Filtering, Wavelet, 
Time-Frequency Analysis

Linear discriminate 
analysis, KNN

Happy, surprise, fear, 
disgust, and neutral

84% 32

- Music 14 12 FD SVM Arousal-valence plane 87% 33

- Pictures 19 10 LZC SVM Arousal-valence plane 83% 34

- Audio 14 5
Statistical Features, FD, 

Power Spectrum
SVM

Pleasant, happy, 
frightened and angry

86% 35

Audio 14 12 FD SVM
Positive and negative 

emotions
85% 36

- Music 19 30 CD, H, LLE, ApEn ANOVA Different mental states - 37

- Audio 7 10 DFA ANOVA Different mental states - 38

DEAP Video clips 32 32 RQA KNN
Arousal, Valence, and 

Liking
68% 39

Abbreviations: DEAP, database for emotion analysis using physiological signals; SVM, support vector machine; KNN, K nearest neighbor;ANOVA, 
analysis of variance; CD, correlation dimension; FD, fractal dimension; ApEn, approximate entropy; ROA, recurrence quantification analysis; SaEn, 
sample entropy; HA, high arousal;  HV, high valence; HA, high arousal; LV, low valence: H, Hurst exponent; DFA, detrended fluctuation analysis; ED, 
embedding dimension; LLE, largest Lyapunov exponent. 
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studies employing nonlinear EEG analysis.8,25-39 As it can 
infer from this Table, emotions can distinguish through 
nonlinear features. In a few studies, researchers focus on 
both arousal and valence values. In most cases, the discrete 
model of emotions considered. It suggests that there is still 
limited knowledge in extracting and selecting significant 
nonlinear features correspondent to arousal and valence. 
Some studies do not report classification accuracy as they 
mainly focus on the class separability of nonlinear features 
and also EEG complexity analysis related to emotional 
changes.8,37,38 For example Hoseingholizade et al reported 
that CD decreased during emotional elicitation in 
comparison with the rest state.8 These studies approve 
of significant shifts in nonlinear attributes as a biological 
response to emotional changes. It is worth mentioning 
that a fair comparison cannot draw since these studies 
have applied different experimental settings. However, 
some basic points can infer without over-generalization. 
Classification accuracy is commensurate with the number 
of EEG channels. More active EEG channels result in 
higher recognition performance. Support vector machine 
(SVM) is broadly utilized in recent studies as it can better 
classify emotions. Nonlinear features seem to be effective 
regarding emotion recognition. Considering nonlinearity 
which exists in the brain responses to emotions, it is 
imperative to employ nonlinear features as they seem to be 
more reliable to describe emotional states precisely. These 
features are more successful as they are more stable and 
can better reflect emotional changes, which is a complex 
process, in comparison with statistical, frequency and 
time-frequency analysis. The linear methods (like power 
spectral density, Fourier analysis, etc) lack the complex 
components of the non-stationary, chaotic EEGs and rely 
on a rough estimation.35,38,39

Motivated by the advantages of employing nonlinear 
features and chaotic analysis, we set out to classify 
emotions through EEG analysis. We choose audio-visual 
stimuli to induce emotions as it has employed in numerous 
emotion recognition studies. Figure 3 shows the block 
diagram of the proposed method. EEGs are first recorded 
and then undergo the preprocessing step. Noise reduction 
and artifact removal are the main part of preprocessing. 
EEG phase space reconstructed, and proposed features 
extracted from clear EEGs. In this paper, an attempt is 
made to quantify the phase space and its characteristics. 
Extracted features statistically evaluated, and the most 
significant ones fed into the classification process. We 
employed 3 basic but efficient feature selection methods 
based on evolutionary algorithms including a genetic 
algorithm (GA), particle swarm optimization (PSO) and 
ant colony (ACO). Three well-known classifiers including 
multi-layer perceptron (MLP), K-nearest neighbor (KNN) 
and SVM are employed. Samples classified according to 
arousal and valence. Some features can describe arousal 
and some features can better discriminate valence. Since 
these 2 factors are important while studying emotions, 

Figure 3. The Block Diagram of the Proposed Method.

the proposed features analyzed regarding both arousal 
and valence classification. The committee machine 
using voting procedure is also applied to increase the 
classification performance. Ten-fold cross-validation is 
performed, and results reported. Results show that the 
proposed method is effective regarding both arousal and 
valence classification. Selected features and brain lobes 
analyzed for class separability and average activation over 
brain regions represented and discussed. Computation 
cost is quite low and comparable to previous studies.

Materials and Methods
Dataset
Emotion elicitation plays a crucial role in emotion-
related studies. Designing efficient and reliable emotion 
elicitation and protocols are critical. There are several 
ways to stimulate emotions such as images, video clips, 
memories, music, etc however, based on previous works 
the audio-visual elicitation has its advantages.40-43 Since 
videos contain both scene and audio, individuals are more 
exposed to real and strong emotional changes. Therefore, 
we employed video clips to stimulate participants’ 
feelings. We chose 20 videos with the approximate length 
of 2 minutes from Iranian movies. There are 4 groups of 
emotions based on the arousal-valence plane. We decided 
to allocate 5 videos to each emotional quadrant. Video 
clips were selected accurately and precisely to have the 
most highlighted scenes related to the correspondent 
feeling. An investigation conducted employing some 
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questionnaires from 10 volunteers who did not participate 
in the experiment to assure the effectiveness of the 
selected video clips as the elicitors. Then 20 healthy males 
and 20 healthy females, aged between 22 and 30 (mean = 
26.13 and SD = 2.79 years), enrolled in the experiment. 
All participants confirmed their normal vision and 
hearing. They also reported no history of mental diseases. 
Volunteers went through the Eysenck Personality 
Questionnaire (EPQ)44 in order to assessed regarding 
their personality. This test categorized individuals in 
3 independent dimensions including Extraversion/
Introversion, Neuroticism/Stability, and Psychoticism/
Socialization. We selected just extraverted subjects as they 
can express their exact feelings immediately.

Potential volunteers were notified about the experiment 
and also basic definitions of emotions, arousal, and 
valence. They read and signed the consent forms and paid 
for their cooperation. Some information such as their 
academic degree, age and sex were also recorded. Each 
enrolled in 4 different sessions to complete the experiment 
in each session, 5 videos have shown to them.

Participants were asked to sit comfortably and observe 
the videos. They were seated approximately 1 m from the 
screen. They also claimed not having had caffeinated or 
alcoholic beverages before the test. Video clips presented 
in a random order and each clip lasted 2 minutes. 

Figure 4 illustrates the experiment scene, recorded EEG 
channels, self-assessment procedure, and the protocol. 
The experiment was carried out in a quiet place, and each 
video clip was preceded by a 5s blank screen notifying the 
participants about the start of the video. After filling in 
the self-assessment for 1 minute, an inter-trial interval (30 
seconds) of blank screen elapsed between movie clips for 
emotion resumption.

The experiment performed in the morning and EEG 
recorded at a sampling frequency of 256 Hz employing 
19 active Ag/AgCl sintered ring electrodes based on 
the international 10-20 system referenced to A1 and 
A2 electrodes and grounded to FPz electrode. Each 
session consisted of a 5-second initial baseline recording. 
Impedances checked below 10 kΩ. The EEG was recorded 
with a resolution of 12 bits/sample.

At the end of each trial, participants were asked to fill 
in the forms and express their feelings toward the video 
in one minute. They performed the self-assessment of 
the level of arousal and valence from 1 to 9. Participants 
registered their opinions toward each video clip using the 
self-assessment manikins (SAM).45 They were also asked 
to mark the approximate position of their feelings in the 
arousal-valence plane and write 2 words to describe them. 
There is a 5s baseline recording before each video clip, 
one minute for self-assessment and 30s for rest in one 
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trial. The experimenter monitored EEGs, participants, 
and their assessment. Table 2 represents brief information 
about this database. We tried to consider all the aspects 
and design an appropriate experiment close to new and 
related databases. 

Due to the complex behavior of EEG signals, time 
intervals do not need to be constant. Therefore estimating 
the best length to window EEGs is of importance. 
Soroush et al74 proposed a new method to identify the 
appropriate time intervals to window EEGs based on 
fractals properties. We compute the relative values of CD 
and FD for the rest mode. Fluctuation of more than 10% 
taken as a new event and a new time interval. EEG signals 
are windowed and reconstructed in phase space, and then 
nonlinear features are extracted. These features are quite 
well-known, and numerous studies have employed them 
so far. For the sake of space just the features, abbreviations 
and correspondent references are reported in Table 3. All 
of the mentioned features categorized as nonlinear time 
series analysis, and in the previous section, it pointed 
out that several studies have reported the effectiveness of 
these attributes while studying emotions through EEG.

Feature Selection
Feature selection is a process in which an attempt is made 
to determine a subset of features from the original set 
of features based on the criterion of feature selection. A 
large number of features usually results in long processing 
time and lower classification performance. Considering 
the number of EEG channels and features, it should note 
that some feature selection methods must be utilized to 
reduce the number of features. Inspired by evolutionary 
approaches, we decided to employ GA,75 PSO76,77 and 
ACO78 to optimize the feature selection problem. Mutual 
information and correlation analysis are also employed 
to avoid redundancy between selected features. Selected 
features normalized before classification.

GA is a computational model which selects a set of 
candidate solutions (chromosomes). All candidates make a 
population together. The algorithm finds the best solution 
through some iterations which are called generations. 
In each generation, 2 chromosomes are considered to 
be the parents and reproduce the next generation. All 
chromosomes are sorted based on a fitness function 
(i.e., k nearest neighbor in this study). It should note that 
mutation also happens in each generation according to a 
very low probability.75 

Inspired by the nature of flying birds, PSO solves 
the optimization problems. Again, a set of solutions 
considered, and each solution has taken as a particle 
with an absolute velocity. PSO finds the optimum regions 
of complex search through the population of particle 
swarms. The velocity of each particle determines the step 
size of each dimension. In a feature selection problem, 
PSO considers features as points in the space. A particle 
put in each point (the subset of features). The particles 

Table 2. Brief Information About the Experiment

Emotion elicitation Video clips

Number of participants 40 people, 50% female, aged: 22-30

Number of video clips 20 selected 2-minute video clips

Recorded signals 19-channel 256 Hz EEG

Ratings Arousal and valence

Rating scale
SAM, 2-word expression, approximate 
position in the arousal-valence plane and 
continuous scale of 1- 9

Signal length Baseline: 5 s, elicitation: 2 m, rest:30 s

then fly to find the best position and meanwhile they 
interact with each other. Finally, they converge to the best 
and optimal position which is the optimum feature subset 
with the highest classification accuracy.76,77 

In ant colonies, a randomly moving ant decides to 
follow the path marked by pheromone, and then this ant 
releases some pheromone to intensify the importance 
of that path. So the probability of each path can be 
determined by the number of ants which are following it. 
This positive feedback results in solving an optimization 
problem in which artificial ants are employed to build 
solutions. The fitness value is in proportional to the 
amount of pheromone. In ACO-based feature selection, 
many artificial ants equal to the original features are 
employed to accumulate pheromones and construct 
sequential solutions. The best ants are selected and fed 
into the next iteration. In each iteration, ants decide on 
one of the solutions based on local heuristics and prior 
knowledge.77,78

Table 3. Extracted Features in This Work and Related Studies

Feature Description Abbreviation Ref.

Correlation dimension CD 63

Fractal dimension FD 64, 65

Largest Lyapunov exponent LLE 63

Embedding dimension ED 64

Average time lag ATL 64

Recurrence rate RR 66-69

Determinism DET 66-69

Laminarity LAM 66-69

Maximum length of vertical structures MLV 66-69

Recurrence time of first type RT 66-69

Average diagonal line length L 66-69

Maximum length of diagonal structures MLD 66-69

Transitivity T 66-69

Entropy ENT 66-69

Permutation entropy PeEn 70-72

Approximate entropy ApEn 70-72

Differential entropy DiEn 70, 71

Sample entropy SaEn 70, 71

Shannon entropy ShEn 72

Log energy entropy LeEn 72
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Classification
Three basic but efficient classifiers employed in order to 
make an appropriate framework to compare the results. 
MLP, KNN and SVM used as classification models in 
the current work. Each classifier solves the recognition 
problem in a different approach — these 3 models 
combined through the voting algorithm. In this method, 
the final decision is made based on the maximum vote for 
the classes.

Complementary information from different classifiers 
can lead to higher accuracy. The weighted linear 
combination of voters (classifiers) can be considered a 
way to improve the quality of final classification. Several 
algorithms such as MinCq79 propose a method to learn a 
weighted majority vote. This method based on a quadratic 
program that minimizes the generalization bound and 
ensures learning of the classification model according to 
theoretical guarantees. We suppose that this mixture can 
help us classify emotions more precisely.

Results and Discussion
EEGs as a response to emotion elicitation through 
watching video clips, are recorded and then preprocessed 
employing SOBI to separate components and SWT to 
suppress noise and artifacts. Clean EEGs are windowed, 
and phase space reconstructed for each channel. As 
mentioned before, nonlinear features extracted from 
all EEG channels. Evolutionary algorithms utilized 
for feature selection. Significant features fed into the 
classification step. It is worth mentioning that all of the 
data divided into 3 parts for feature selection, training and 
testing the proposed model. Ten-fold cross-validation is 
then performed to evaluate the suggested approach. 

For the preprocessing step, it should note that biological 
artifacts mainly arise from 2 significant sources including 
environmental and physiological signals. Conventional 
methods like linear filters are not appropriate and effective 
due to inherent overlap in the frequency domain between 
artifacts and cerebral activity. BSS approaches have been 
reported to be successful in extracting EEG sources. 
Different articles have concluded that independent 
component analysis (ICA) is the most robust method in 
artifact elimination but is not very fast concerning time.

Preprocessing
Unfortunately, in most practical settings EEGs are 
corrupted by environmental and physiological signals 
called EEG artifacts.46,47 Blind source separation (BSS) 
methods have been receiving a great deal of attention 
in EEG processing and artifact suppression since they 
isolate noise and artifacts into independent components 
(ICs) using subspace filtering.47 Second order blind 
identification (SOBI) utilizes the original EEG and time-
shifted version(s) in order to exploit temporal information 
and estimate uncorrelated components. Among different 
BSS based methods, SOBI is reportedly the most effective 

one while processing EEG.47-56 Therefore, we decided to 
use SOBI in this study to extract EEG sources. EEG sources 
are visually investigated by experts using temporal, spatial 
and topographical representations.

A well-known algorithm to suppress artifacts is 
decomposing artifactual components by wavelet 
transform. Decomposed sub-bands are denoised by 
thresholding.48-50 Several studies have suggested wavelet 
with the aim of artifact elimination.57-60 The type of 
wavelet transform varies in each study. It can be a discrete 
wavelet transform (DWT), continuous wavelet transform 
(CWT) or stationary wavelet transform (SWT).48-50 As 
it states in,55,59 SWT is superior to DWT and CWT in 
removing biological artifacts. So in this study identified 
artifactual sources are eliminated using SWT.

It should note that in this step EEGs are also common 
averaged referenced and high-pass filtered employing 
EEGLAB.46 The cutoff-frequency is 2 Hz. All recordings 
visually checked and EEGs severely contaminated by 
EMG and EOG are removed manually. EEGs observed 
so that no noticeable artifacts or noises exist after the 
preprocessing step. 

Feature Extraction
All features in this study are related to the phase space 
of EEGs. Phase space reconstruction plays an important 
role in the nonlinear analysis and is the key to gaining 
information about complex signals. An attempt is made 
to focus on the features extracted from phase space. 
Suppose that x(t) is a signal with N time samples. We can 
reconstruct N – p + 1 vectors in the phase space as:

X(i)=[ x(i+T) x(i+2T) … x(i+N-(p-1)T)] i=1,2,…,N-(p-1)
T                                                                                            (1)

Where p and T, which are the ED and time delay 
respectively, can be estimated by using the false nearest-
neighbors algorithm61 and the mutual information.62 (see 
Table 363-72).

Figure 5 shows a sample of corrupted and clean EEG 
using the proposed preprocessing method. As it can be 
seen SOBI and SWT make a useful contribution to EEG 
noise removal. After source separation, different views 
can be taken into account to remove artifacts. One can set 
artifactual components to zero which is not very practical 
since it is entirely possible that neural information (might) 
leak into these components. So ignoring all artifactual 
sources might lead to information loss. Although this 
approach seems to be very simple, it leads to significant 
distortion in reconstructed EEGs.

Additionally, SWT is translation-invariant which 
suggests its superiority to DWT while removing biological 
artifacts.48,49,55,59 We employ SWT to denoise detected 
artifactual components and to prevent data loss since 
there is always information leakage to artifact components 
while using BSS methods. SWT can maintain cerebral 
activity and a large extent, reject artifacts too. Remained 
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components are used to reconstruct clean EEG.
Noise-free EEGs are windowed using changes in 2 

important parameters including CD and FD. It assumed 
that emotional stimuli lead to considerable changes in 
EEG behavior and information. As mentioned before, this 
approach is found practical in previous studies such as.74 
The emotional changes result in information creation, 
bifurcation in EEGs and consequently fluctuations in 
CD and FD. Not only are these attributes related to the 
changes in information index and bifurcation but also, 
they are less sensitive to noise and artifacts in comparison 
with other features. Nonlinear attributes extracted from 
windowed EEGs and feature selection performed. Tables 
4 and 5 represent the most significant features which 
are selected by GA, PSO, and ACO. Two-sample t test is 
also carried out for each method in order to investigate 
selected features regarding separability for arousal and 

valence. Ten most significant features, P values, and 
correspondent EEG channels are reported in Tables 4 and 
5 for arousal and valence classification respectively.

As it can see, nonlinear features are quite adequate for 
arousal and valence classification alike. We also consider 
the selected features and the average P values for the 
proposed nonlinear features. These average values can 
assume as some comparison criteria among the feature 
selection methods. While GA performs better for arousal, 
PSO-based feature selection method seems to be more 
efficient for valence. 

It can see that RQA is more successful in arousal-based 
emotion classification. Some attributes like RR, LAM, and 
DET are common among the proposed methods. Bahari 
and Janghorbani have also approved that emotions can 
classify through RQA.39 In contrast, different entropies 
seem to be more efficient in valence-based emotion 

A

B

Figure 5. (A) Contaminated and (B) Preprocessed EEG Using the Suggested Method.

Table 4. Ten Most Significant Features Identified by GA, PSO, and ACO for Arousal Classification

GA PSO ACO

Feature Channel  P Value * 10-2 Feature Channel  P Value * 10-2 Feature Channel  P Value * 10-2

CD Fp1 1.92 DET T6 2.67 RT F4 2.88

LeEn T3 3.93 ENT Fp1 3.22 SaEn F8 3.91

FD F7 2.12 FD P4 1.76 ATL Fp1 2.69

T O1 2.47 MLV Fp2 4.67 CD Fp2 3.47

SaEn T4 2.56 CD F3 1.34 LLE T6 2.39

LAM Fp2 1.32 ED O2 2.97 ApEn F4 4.17

LLE C3 3.15 LAM F7 2.02 FD Fp2 3.28

SE T5 4.19 RR Fp2 3.17 T T6 4.77

FD F3 2.93 LLE O1 4.22 DET O1 3.14

RR P3 3.81 MLD C3 3.63 L F7 4.55

Average 2.84 Average 2.97 Average 3.52
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recognition. The usage of entropies in EEG-based emotion 
recognition has also reported in.27,29,30 CD and FD have 
almost the same portions for arousal and valence. In some 
previous works such as,74 it claims that these features are 
active while classifying emotional states.

To go further, we decided to analyze the results in 
Tables 4 and 5 in topographic brain maps. Figures 6 and 7 
illustrate the separability index in brain lobes for arousal 
and valence respectively — 50 of the most significant 
features selected for each method and the whole 
separability index calculated. It can infer that frontal and 
temporal lobes have the most profound effect. It is claimed 
that these lobes can truly reflect emotional changes.10,37,74 
Occipital lobe seems to be significant in comparison with 
other lobes as it is the origin of neural activity in response 
to visual stimuli. Take a close look at Figure 6; it can see 
that frontal lobe is reported to be the most effective lobe 
for arousal. Besides that, temporal and occipital lobe plays 
a vital role for valence in Figure 7. Based on Tables 4 and 
5, most selected features are from these mentioned brain 

Figure 6. EEG Channels Separability Index for Arousal Determined 
by (A) GA, (B) PSO and (C) ACO. 

Figure 7. EEG Channels Separability Index for Valence Determined 
by (A) GA, (B) PSO and (C) ACO. 

Table 5. Ten Most Significant Features Identified by GA, PSO, and ACO for Valence Classification

GA PSO ACO

Feature Channel  P Value * 10-2 Feature Channel  P Value * 10-2 Feature Channel  P Value * 10-2

SaEn Fp1 2.27 ApEn T6 3.34 ATL F3 3.14

CD Fp1 1.98 DET F4 1.86 ApEn Fp2 3.97

L F7 4.33 ApEn O1 2.99 CD F7 1.39

DiEn F7 1.78 RT Fp2 3.13 PeEn T3 4.13

MLD O1 2.42 LAM P4 4.72 RR O2 3.53

DET F4 3.16 CD T4 2.73 ENT F3 2.91

DiEn T4 4.65 ED O2 3.17 SaEn T3 3.42

L F3 2.63 ShEn T6 1.02 RT Fp1 3.64

MLV C4 3.96 ATL C4 2.81 LAM P3 2.76

LeEn C3 4.36 RR Fp1 3.79 FD F7 4.08

Average 3.16 Average 2.94 Average 3.29
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Figure 6. EEG Channels Separability Index for Arousal Determined by (A) GA, 
(B) PSO and (C) ACO.  

It can see that RQA is more successful in arousal-based emotion classification. 
Some attributes like RR, LAM, and DET are common among the proposed 
methods. Bahari  and Janghorbani have also approved that emotions can classify 
through RQA.39 In contrast, different entropies seem to be more efficient in 
valence-based emotion recognition. The usage of entropies in EEG-based emotion 
recognition has also reported in.27,29,30 CD and FD have almost the same portions 
for arousal and valence. In some previous works such as,74 it claims that these 
features are active while classifying emotional states. 

Table 5. Ten most significant features identified by GA, PSO, and ACO for 
valence classification  

 

To go further, we decided to analyze the results in Tables 4 and 5 in topographic 
brain maps. Figures 6 and 7 illustrate the separability index in brain lobes for  

 

arousal and channels in emotion recognition. By processing only these channels, it 
is more likely to decrease computation cost. 
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Figure 7. EEG channels separability index for valence determined by (a) GA, (b) 
PSO and (c) ACO  

We are also motivated to compare features in details. 

The average rate of presence has calculated among the top 50 features over all the 
channels for each attribute. The average score reported in Table 6. This score 

regions. One can choose Fp1, Fp2, F3, F7, T3, T4, C3, 
P3, O1 and O2 as the most influential EEG channels in 
emotion recognition. By processing only these channels, 
it is more likely to decrease computation cost.

We are also motivated to compare features in details.
The average rate of presence has calculated among the 

top 50 features over all the channels for each attribute. The 
average score reported in Table 6. This score suggests the 
contribution that each feature makes and can be employed 
as a criterion to compare the results. Surprisingly, CD 
and FD have the same score. It can also realize that RQA 
has a higher score regarding arousal classification in 
comparison with entropies. Seemingly, higher scores go 
to entropies when it comes to valence. 

Ten-fold cross-validation is performed to evaluate the 
proposed method. Then, performance criteria including 
accuracy (ACC), sensitivity (SEN), specificity (SPC) and 
precision (PER) calculated. These parameters are defined 
as shown below:

TP TNACC
TP TN FP FN

+
=

+ + +                                                                                               (2)

TPSEN
TP FN

=
+                                                                                                (3)

TNSPC
TN FP

=
+

                                                                  (4)

TPPER
TP FP

=
+                                                                                                 (5)

Where TP, TN, FP, FN stand for true positive, true 
negative, false positive and false negative respectively.

Table 7 represents the recognition performance for 
different feature selection and classification methods. 
All mentioned classification performance parameters 
reported in percentage.

As it can see, there is a slight difference between 
recognition approaches. For example, SVM seems to 
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be more successful than 2 other classifiers that proved 
by previous studies like which preferred SVM.27,29,30,33,34 
Recognition rate is almost higher for arousal in 
comparison with valence in all classification methods. It 
has reported in.26,27 GA and PSO are more effective than 
ACO in this study. We decided to employ the combination 
of classifiers through the majority voting method in order 
to enhance the results. Two scenarios can be considered 
to fuse feature selection methods and classifiers. Figure 8 
shows the 2 suggested procedures.

In the first approach, selected features by GA, PSO, 
and ACO are fed into 3 classifiers separately. We call 
this fusion majority voting 1. Considering that each 

feature selection method views the problem differently, 
it is reasonable to deduce that the combination of these 
methods might result in higher accuracy. To go further, 
we decided to follow the second structure called majority 
voting 2 in this paper. In this approach, selected features 
from each method mixed and the most significant ones 
taken to the classifiers. Classification models are also 
fused, and a final decision made. Table 8 represents the 
classification performance for majority voting 2.

As expected, this combination is more efficient than the 
previous structures. We also decided to apply the second 
scenario of emotion recognition to classify data into 4 
groups including HAHV, HALV, LAHV and LALV. The 

Table 6. The Presence of Features Among 100 Selected Attributes

Features
Arousal Classification Valence Classification

Average Score
GA PSO ACO GA PSO ACO

CD 9 6 4 7 7 4 6.17

FD 7 5 5 8 5 7 6.17

LLE 4 8 5 5 2 5 4.83

ED 3 5 4 3 2 3 3.33

ATL 5 9 5 5 5 4 5.50

RR 7 5 6 5 4 8 5.83

DET 9 2 5 7 7 4 5.66

LAM 7 7 6 3 4 5 5.33

MLV 5 5 7 2 8 4 5.16

RT 4 5 6 4 3 5 4.50

L 5 4 5 2 4 3 3.83

MLD 4 5 7 4 6 4 5.00

T 3 6 2 7 4 5 4.50

ENT 2 3 6 3 3 4 3.50

PeEn 4 5 3 4 7 7 5.00

ApEn 8 3 7 8 4 9 6.50

DiEn 2 5 4 4 6 3 4.00

SaEn 5 3 4 7 6 7 5.33

ShEn 4 4 5 9 5 5 5.33

LeEn 3 5 4 3 8 4 4.50

Table 7. Classification Performance of the Proposed Method Including Different Feature Selection Methods and Classification Models

Classifiers
Arousal Classification (%) Valence Classification (%)

GA PSO ACO GA PSO ACO

MLP

ACC 76.46 75.88 71.79 75.97 74.69 72.40

SEN 78.10 72.63 72.57 72.73 74.27 74.90

SPC 77.18 77.66 66.16 79.11 75.95 74.50

PER 74.08 71.55 79.31 69.86 75.93 76.88

KNN

ACC 73.61 70.95 65.73 70.17 66.62 62.01

SEN 73.50 71.07 68.30 69.81 65.46 63.37

SPC 74.22 69.69 65.95 70.1 66.22 65.15

PER 73.58 70.02 67.10 69.38 67.25 64.89

SVM

ACC 86.27 81.35 76.69 82.73 77.63 79.81

SEN 83.32 82.65 77.11 81.09 78.25 80.05

SPC 83.40 83.97 78.32 80.65 76.52 79.15

PER 84.23 82.59 77.35 81.30 78.77 81.24

Majority Voting 1

ACC 87.42 85.73 80.25 84.58 80.64 83.16

SEN 88.66 84.46 81.87 87.08 81.50 82.75

SPC 86.70 83.46 80.59 87.50 81.55 82.99

PER 85.79 85.41 82.76 86.26 82.31 80.56

http://journals.sbmu.ac.ir/Neuroscience


                                                     Int Clin Neurosci J. Vol 5, No 4, Autumn 2018 145

                                                                        Emotion Recognition Using Nonlinear EEG Analysis

journals.sbmu.ac.ir/Neurosciencehttp

classification accuracy is 83.29% for the 4-class emotion 
recognition. Since arousal and valence are considered 
2 major factors indicating emotions, several previous 
studies concentrate on classifying emotions into the 4 
mentioned classes. 

In addition, the database for emotion analysis 
using physiological signals (DEAP)80 has been drawn 
considerable attention from researchers to evaluate their 
methods. Numerous studies have employed this database 
such as.25,26,30,39 Thirty-two individuals participated in 
the experiment, and 40 one-minute video clips shown. 
Thirty-two EEG channels were recorded and then 
preprocessed. Similar to our experiment, ratings include 
arousal and valence. For more information about DEAP, 
refer to Koelstra et al.80 

To make a comparison, we decided to apply the 
proposed method on EEGs from this database and classify 
emotions into 4 mentioned groups. A classification rate 
of 84.56% achieved. Figure 9 illustrates the classification 
performance of the proposed method and some previous 
works using DEAP. Taking a closer look at the results, 
it can conclude that the suggested features, feature 
selection, and classification approach are quite effective 
and comparable to other studies. This comparison is 
made to evaluate the suggested classification framework, 
however, in the current work the main focus is on our 
database. We also decided to investigate our recorded 
EEGs more regarding neural activity and effective brain 
lobes. Detection of brain lobes associated with emotional 
states is a matter of immense importance in neuroscience. 
The average activity for brain lobes shown in Figure 10.

Neural activity is calculated for EEG components and 
then averaged over all samples for high arousal (HA), 
low arousal (LA), high valence (HV) and low valence 
(LV). SOBI has been employed to extract components 

(A) (B)

Figure 8. The 2 Suggested Approaches for Combining Feature Selection and Classification Methods. (A) Majority Voting 1 and (B) Majority Voting 2. 

Figure 9. Comparison Between the Proposed Method and Previous 
Studies Regarding Emotion Recognition Rate Using DEAP.

Table 8. Classification Performance of Majority Voting 2

Arousal Classification (%) Valence Classification (%)

Majority Voting 2
ACC SEN SPC PER ACC SEN SPC PER

91.83 89.13 91.12 89.41 90.68 88.22 91.20 89.91
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or to remove artifacts in several studies. Several authors 
have found SOBI the most reliable and widely used 
approach.51-53 Several toolboxes like EEGLAB have 
implemented SOBI due to its wide usage and efficiency. 
SOBI is known as a superior method in comparison 
with ICA and most BSS methods. Therefore, we decided 
to use SOBI in this study to extract EEG sources. EEG 
source separation and topographic mapping performed 
employing EEGLAB. 

Considering the results as mentioned earlier, we can 
conclude that while frontal and occipital lobes associated 
with arousal changes, temporal, frontal and occipital lobes 
correspond to valence. Also, it can see that results support 
each other in Figures 6 and 7 and Tables 4 and 5. Moreover, 
a relation between brain regions shown in Figure 10. 
The physiological meaning of this connection can be 
investigated in future works using brain connectivity or 
other computational methods in neuroscience.

Studying effective lobes for arousal and valence not 
only extends our knowledge but will also be very effective 
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in real applications in diagnosis and treatment. Since 
the second scenario of classification (majority voting 2) 
chosen as the final structure, we consider the 50 most 
significant features selected by this approach and the 
proportion of each brain lobe illustrated in Figure 11. 
Similar to the previous sections, arousal and valence 
considered, and the brain region shares for each factor 
calculated. Figure 11 represents the role of each brain 
lobe in arousal and valence classification. Based on this 
pie chart, it is clear that frontal and temporal lobes have 
the most significant impact. Occipital lobe also plays 
an essential role in arousal classification. Almost one-
third of selected features come from the frontal lobe for 
both arousal and valence. While frontal lobe is the most 
active region for arousal, temporal lobe seems to be more 
prominent for valence classification. In contrast to other 
brain regions, central lobe has almost equal portions in 
this study that also applies to the parietal lobe. Although 
previous studies have employed different datasets, some 
of them like Soroush et al25 approve of almost the same 
activation patterns for the frontal, temporal and central 
lobes. As Figure 11 suggests, emotions originate from 
all brain regions in a nonlinear manner. It can infer that 
there are nonlinear interactions between these lobes and 
further studies can concentrate on extracting meaningful 
information with the aim of understanding emotions 
better. 

All simulations are carried out employing MATLAB 
(release R2015b) running on Windows 7 Laptop PC with 
Intel(R) Core(TM) 2 Duo 2.0 GHz processor with 8 GB 
RAM. The proposed method is almost computationally 
intensive, and in further studies, new algorithms could 
be introduced to make the implementation faster and 
consequently the proposed method more practical for 
online emotion recognition.

Conclusion
In this paper, we introduce a new method to classify 

(A) (B)

(C) (D)

Figure 10. Average Brain Activity Over All Samples in (A) HA, (B) LA, (C) HV and (D) LV.

Figure 11. The Proportion of Each Brain Region in Feature Presence 
Among the 50 Most Significant Attributes for (A) Arousal and (B) 
Valence Classification.
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emotions through EEG signals. It reports that nonlinear 
analysis can better describe complex systems such as 
emotion regulation. As mentioned before, the brain 
dynamics in different emotional states reflected by 
extracting chaotic features like what has employed in 
this study. We also test evolutionary feature selection 
methods, and different classification approaches to 
achieve the highest results. The combination of feature 
selection methods and classification models (majority 
voting) results in higher recognition rates. Brain regions 
associated with emotional states are analyzed, and the 
results discussed. Like every single study, this paper also 
has advantages and weak points. More investigation can 
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be performed to describe the physiological meaning of 
the extracted features. Other classification approaches 
and fusion frameworks can employ in further studies. 
In the future, researchers can decrease the computation 
cost and processing time. It is worth mentioning that the 
advantages of the current study outweigh the drawbacks. 
This study has prompted us to view and analyze the phase 
space and nonlinear analysis from different aspects and 
for our future studies.
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