
Introduction
The electromyography (EMG) signal measures the 
elicited electrical currents generated during the muscle 
contraction representing the neuromuscular activities. 
The recorded surface EMG signals show the motor 
neurons activity, can reflect the relative level of muscle 
activation and bear valuable information about muscle 
functions.1,2 The nervous system controls muscle activities 
such as contraction and relaxation. Hence, the complicated 
EMG signal, which is controlled by the nervous system, 
is dependent on the anatomical and physiological 
properties of muscles.3 The EMG recordings have shown 
that the activity patterns of the various involved muscles 
during the locomotion, may exhibit considerable step-
by-step variability. In other words, an electromyographic 

activity pattern of each involved muscle during the gait 
cycle exhibits a considerable intersubject, intermuscle 
and context-dependent variability.4 The EMG signals can 
use for clinical and biomedical applications, evolvable 
hardware chip (EHW) development, and modern human-
computer interaction.3 The researchers significantly 
address the field of motor rehabilitation, as an application 
area.

It has shown recently that the nervous system can 
produce different movements by controlling the muscles 
by activating flexible combinations of muscle synergies. 
In other words, though the many muscles may involve 
during the locomotion, that human locomotion can 
control by flexible combinations of a small number of 
muscle activity patterns.5 The use of such models has 
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limitations, such as generalizability and repeatability for 
different individuals in different situations.

The reproducible pattern of muscle activation during 
walking in healthy adults has observed. Such pattern 
generated due to inhibition of gastrocnemius/soleus (GS/
SOL) muscle activity followed by activation of the tibialis-
anterior (TA) muscle bilaterally. A temporally invariant 
relationship between soleus muscle (SOL) inhibition and 
TA activation has found which is utilized by the central 
nervous system (CNS) as a motor program for controlling 
the gait initiation.6 Also, the coordinated hip muscle 
activities accelerate the center of mass (COM) movement 
and allow the swing limb to be elevated.7-9 Thus, from the 
mechanic’s point of view undermining the coordination 
of muscle groups is an important issue.10

In recent studies, the EMG of residual limb muscles of 
amputees may bear useful information on adaptations 
besides those that can be found using the kinetic data.11 
It has reported that the co-activation of the upper leg 
muscles of the intact limb in amputees was greater than in 
controls.12 Furthermore, researchers reported that during 
the gait, the muscle activity of residual limb muscles in 
three trans-femoral amputees correlates with the socket 
pressure.13 Muscle activity per gait phase (stance and 
swing) can give more insight to the changes are observed 
in the muscle activity patterns in amputees.14

Some researchers showed that three basic patterns could 
account for the activity of some leg muscles involved 
during the locomotion. Accordingly, it has suggested 
that the observed complex muscle activity patterns may 
control by a few underlying activity pattern generators.15,16

In recent researches, muscle activation in non-disabled 
participants investigated by recording surface EMG during 
treadmill walking at different speeds. They observed that 
each muscle had a different activation pattern throughout 
the gait cycle. With increasing walking speed, the phase-
dependent activation remained similar, but the mean 
amplitudes generally increased.3 The recent studies 
show significant differences in both spatial and temporal 
properties of the most muscles of the lower extremity. The 
compared muscle activation patterns measured during 
ambulating within a commercially available robotic 
orthosis. The researchers hypothesize that after walking 
using the robotic orthosis for just a short period; subjects 
could adapt their gait pattern and learn a new set of motor 
commands necessary to carry out the restricted movement 
imposed by the robot. Since the device imposes numerous 
restrictions on the gait pattern, some differences in the 
activation patterns of some muscles found.17

In previous studies, a neural network has been proposed 
to predict the muscle activations using EMG signals [18]. 
Using a 4-layer feed-forward neural network to predict 
the muscle activations avoids establishing a complex 
mathematical model to express the muscle activation 
dynamics. In this study, the basic back-propagation 
algorithm was not applicable, because the real muscle 

activation was not available.18 Once the muscle activations 
obtained, the muscle force was estimated using the Hill-
type models.18 

Some certain points obtained from last studies that 
present different musculoskeletal models for predicting 
muscle activity patterns. Besides, the musculoskeletal 
modeling can be used to calculate many significant 
kinetic data that are difficult to be measured such as joint 
force or ligament force.19

In previous papers, a musculoskeletal model of the 
lower limb is used to predict the hip contact forces and 
elicited muscle activations during walking at different 
speeds for three total hip replacement patients implanted 
with instrumented prostheses. The developed model 
could estimate the magnitude of hip contact forces with 
encouraging accuracy regarding relative peak error. As 
documented in the literature, the predictions were more 
accurate for slow walking speed. The static optimization 
technique adopted to estimate muscle activation profiles 
reproduced for the majority of muscles for different 
walking speeds.20,21 The other model’s study shows that, 
this model, which was optimized based on the EMG 
driven model, as an EMG-driven model can predict 
unseen trials. Researchers in this study evaluated this 
optimization model on 2 stroke patients. The corrective 
changes in EMG patterns of muscles during the walking 
trials observed. These calculated corrective changes 
could use as reference data used for the stroke patients’ 
gait training by functional electrical stimulation (FES). 
According to the reported results, the TA activity during 
swing phase in post-stroke subjects was similar to that 
found in unimpaired subjects. Also, the expected second 
peak of TA activity at initial foot contact lacked. This 
expected peak of activity might account for their flat foot 
walking. Thus, correcting the Tibialis- Anterior activity is 
needed to avoid the drop-foot.22,23

The aim of this study according to the previous works 
that had done, is to present a model using the chaotic 
oscillator, which can generate the desired activity pattern. 
In this study, the use of chaotic oscillator is so essential, 
because EMG has chaotic nature. According to this issue 
that stimulation pattern is a multiple of activity pattern, 
using activity pattern yielded the desired stimulation 
pattern. The desired stimulation pattern can help drop-
foot patients to restore their ability to walk. In other 
words, the purpose of this study is to present a model that 
generates the desired muscle activity pattern.

Materials and Methods 
Data Collection
In this study, the identification of the activity pattern’s 
model based on real experimental recorded data. 
Therefore, at the first step, EMG data recorded from 
5 healthy subjects who were 2 males and three females 
between the ages of 26-34 years. In this experiment, the 
limitation for the stride length and walking speed does not 
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consider, and all the subjects walked with preferred speed. 
Chest leads located on the TA and rectus- femoris muscles. 
Every subject walked 20 steps during recording the data. 
The device of recording EMG signal is Flexcomp. The 
Flexcomp is a 10-channel recording system. It as a multi-
modality encoder has some needed flexibilities for real-
time, computerized biofeedback and data acquisition in 
the different clinical setting. The Flexcomp covers the full 
range of objective physiological signals used in research 
and clinical applications. It has software that installed on 
the computer which facilitates easy data recording. EMG 
recording electrodes positioned on the TA and rectus-
femoris muscles on every 2 feet. Researchers focused on 
surface electromygraphy (sEMG) analyses can appreciate 
its ability to monitor, to record and to display the raw 
sEMG. Besides, computing and displaying the median 
frequency, RMS, peak-to-peak, 2D and 3D frequency and 
power spectrum of the signals is possible.

The type of electrodes used was Ag-AgCl. Good 
electrical contact achieved between the recording 
amplifier and the muscles. In order to extract the desired 
activity pattern from the EMG signals, the main signal 
passed from bandpass filter with order 3 and butter worth 
filter to noise elimination. At the same time with the EMG 
recording, angle changes of people’s joint during walking 
were obtained, for which we can write fuzzy rules basis. 
In other words, using recorded data from healthy subjects 
and the range of angle joints changes of the foot during 
walking in the subjects, fuzzy rules were obtained. Writing 
the fuzzy rules are based on the changes of foot’s joints 
and the membership function of their changes (Figure 1).

In this study, the differences between the actual angle 
and the desired angle are the input of the fuzzy system, 
and the desired muscle activity pattern is the output of 
the fuzzy system.

The Proposed Model
In this study, the Hopf oscillator generated an activity 
pattern. The Hopf oscillator has used as a trained 
pattern generator. According to some reported studies,24 
observing chaotic nature in the behavior of the EMG 
signal is not surprising. Therefore, the Hopf oscillator as 
an adaptive oscillator was utilized, which can potentially 
generate chaotic dynamics.24

Although the oscillator was trained using human 
data, the time-varying dynamic of gait may undermine 
the performance of the oscillator to track the dynamic 

Figure 1. Placement of the electrodes.
Figure 2. Block Diagram of the Desired Activity Pattern Generated.

variations accurately. So a fuzzy compensator was added 
to cope with this problem. The fuzzy rules designed in 
a manner that can modify the muscle activation pattern 
generated by the oscillator during the time. The fuzzy 
logic system corrects the activation level whenever the 
ankle joint angle violates the specific boundaries, which 
must restrict within them during each gait phase. In other 
words, the differences between the actual angle and the 
joint angle trajectory obtained using the recorded data 
related to the healthy subjects were the input of the fuzzy 
system. Based on the designed rules, the necessary changes 
given on the oscillator generated pattern. It means that 
according to the difference between the desired pattern 
and the pattern generated by the oscillator, the fuzzy 
compensator modifies the generated pattern by the Hopf 
oscillator in order to be closer to the desired pattern.

Figure 2 shows the structure of the proposed model. In 
Figure 2, ∆ as the input of the fuzzy system is the difference 
between the actual angle and the extremes of the desired 
angle profile related to the healthy subject. Uc is also the 
output of the fuzzy system which generated through some 
designed fuzzy rules. U1 is also the generated pattern by 
the Hopf oscillator. Uc is a compensatory component 
modifying the output of HOPF oscillator during the gait 
cycle.

The HOPF Oscillator
In recent years, central pattern generators (CPGs) 
models are progressively used to control the vast kinds 
of autonomous robots’ locomotion.25-28 CPGs often 
modeled through coupled nonlinear oscillators.29 The 
Complex oscillatory patterns can be generated using the 
coupled nonlinear oscillators. Hence, it will make these 
systems fascinating in order to such models can be used 
to model animals’ gaits and to control robots.30 However, 
since the different parameters have to be tuned by an 
optimization algorithm or by hand, in most cases the 
design of such CPGs is not trivial. Indeed, the values of 
different parameters determining the frequency of the 
oscillations and their respective phase lags, usually need 
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to be adjusted.24

In this study, the coupled Hopf oscillator used. The 
purpose of such a coupling is to keep the correct phase 
differences between the oscillators.24 As shown in Figure 
3, in the coupled Hopf oscillator, a phase signal Ri, which 
is in-phase with x0, has the frequency of oscillator i. If 
we couple Ri with oscillator I, then it will be seen phase-
locking between oscillator 0 and i. Each oscillator receives 
the same learning signal F(t)=Pteach(t) -∑aixi which is 
the difference between the signal to be learned, Pteach (t), 
and the signal already learned, Qlearned (t). Then all the 
oscillators (except oscillator 0) receive the scaled phase 
input Ri from oscillator 0.

The equation for oscillator i, with coupling to oscillator 
0 for phase-lock, is given by the following equations:

4 
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their respective phase lags, usually need to be adjusted [24]. 
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is the difference between the signal to be learned, Pteach(t), and the signal already learned, Qlearned (t). Then all the 
oscillators (except oscillator 0) receive the scaled phase input Ri from oscillator 0. 
 

 
 

Figure 3. The adaptive Hopf coupled oscillator 
 
The equation for oscillator i, with coupling to oscillator 0 for phase-lock, is given by the following equations: 
 
𝑥̇𝑥𝑖𝑖= γ(µ − 𝑟𝑟𝑖𝑖2)𝑥𝑥𝑖𝑖 − 𝜔𝜔𝑖𝑖𝑦𝑦𝑖𝑖 + εF(t) + τ sin(𝑅𝑅𝑖𝑖)                       
 
𝑦𝑦𝑖̇𝑖= γ(µ − 𝑟𝑟𝑖𝑖2)𝑦𝑦𝑖𝑖+ 𝜔𝜔𝑖𝑖𝑥𝑥𝑖𝑖 
 

Where xi, yi, and ωi describe the ith adaptive Hopf 
oscillator. 2 2

ir x y= + and ε are positive coupling constants 
controlling the learning rate, and τ is a coupling constant. 
Coupling all the oscillators with oscillator 0 assure stable 
phase-locked oscillations.31 

τ is a coupling constant and 2 2
ir x y= + and ε are 

positive coupling constants controlling the learning rate. 
All employed oscillators coupled with oscillator 0. Such 
couplings give assurance of stability of phase-locked 
oscillations.31

Designed Fuzzy Logic System
Fuzzy logic is a kind of logic that not only includes true or 
false values; also it uses a continuous range of truth values 
in the interval [0, 1]. Furthermore, it lets us combine 
numerical data and linguistic knowledge systematically.32 
Fuzzy systems based on human knowledge in the form 
of if-then rules. Mamdani fuzzy system has used in this 
study. The general structure of fuzzy rules in this research 
is as follows:
If θd is μA and ∆ is μB then μC is μC.

In the fuzzy rules, θd desired angle of the ankle in the 
healthy subjects, Δ is the angle difference of the ankle in 
the healthy subjects and patients and μC as the output of 
fuzzy logic system determines the compensatory signal 
correcting the muscle activity pattern generated by HOPF 
oscillator activity derived from healthy individuals. 
Finally, some membership functions assigned for θd, Δ, 
and μC (μA, μB, μC) (Figure 4).

The following lookup table shows the designed 
fuzzy rules. According to this table, the rules with less 
importance eliminated. The rules were extracted using 
analyzing the range of recorded human data related to 
ankle joint movement. At first, the range of ankle joint 
motion during each gait phase was specified using healthy 
human data analyses. Then, the fuzzy rules were designed 
to adjust the output of the HOPF oscillator according 

Figure 3. The Adaptive Hopf Coupled Oscillator.

Figure 4. The Membership Function Of Fuzzy Rules.

to the difference between the actual joint angle and the 
specified range corresponding to that sample time. The 
fuzzy system as a compensatory controller corrects 
the muscle activation pattern whenever the ankle joint 
violates the specific extremes. This correcting process by 
the fuzzy logic system is carried out in an online manner 
to reduce the possible difference between the muscle 
activation pattern obtained using healthy human data 
(Figure 5).

Results
Figures 6 and 7 show three sample obtained results. 
Figure 6 and 7 showed the model outputs along with the 
extracted Rectus- Femoris muscle activation pattern and 
extracted Tibialis- Anterior muscle activation pattern 
respectively. Figure 6 shows the model output while the 
fuzzy compensatory system has adopted and Figure 7 
shows the model output while no fuzzy compensatory 
system has adopted. The activation patterns extracted 
from actual data recorded from the healthy subjects 
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during walking. It took 20 steps to walk during each trial.
For the sake of quantitative assessment, the correlation 

coefficient and root mean square error (RMSE) computed. 
The correlation coefficient, which is the covariance of 
the variables divided by the product of their standard 
deviations, between 2 variables X and Y can be computed 
using the following equation:

7 
 

 

Figure 6. The desired activation pattern of the  Rectus- Femoris muscle (a,b), and Tibialis- Anterior muscle (c,d), in a sample healthy subject 
along with the activation pattern generated by the Hopf oscillator and a fuzzy compensator. 
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Where cov means covariance, Corr is the usual symbol for correlation and sigma is the standard deviation symbol. 
The Root Mean Square Error (RMSE) is a frequently used measure of the difference between values predicted by a 
model and the values observed from the environment that modeled, and obtained from the following equation:  
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𝑛𝑛  

Where 𝑥𝑥𝑖𝑖  is the measured value, 𝑥̇𝑥𝑖𝑖 is the predicted value, and n is the number of data samples. 
According to the results, the generated activity pattern by the proposed model cannot follow the desired activity of 
the Tibialis- Anterior muscle as well as Rectus- Femoris muscle. The Tables 1 and 2 show the mean value and 
standard deviation of the computed correlation coefficient and RMSE related to each muscle in all subjects.  
 

Table 1. The mean value at standard deviation and computed correlation coefficient related to each subject with fuzzy compensator 
 

  
Subject1 

 
Subject2 

 
Subject3 

 
Subject4 

 
Subject5 

Rectus- 
Femuris 

  
0.59 ± 0.19 

  
0.58±0.17 

  
0.65 ± 0.25 

  
0.65 ± 0.13 

  
0.61± 0.30 

Tibialis 
anterior 

  
0.52 ± 0.17 

  
0.45± 0.14 

  
0.61 ± 0.08 

  
0.36 ± 0.32 

  
0.34±0.20 

 
Table 2. The mean value at standard deviation and computed RMSE related to each subject with fuzzy compensator 

 
  

Subject1 
 

Subject2 
 

Subject3 
 

Subject4 
 

Subject5 
 

Rectus- 
Femoris 

 
0.72± 0.97 

 
0.30±0.24 

 
0.30±0.14 

 
0.27±0.17 

 
0.28±0.15 

 
Tibialis- 
anterior 

 
0.82±0.85 

 
0.34±0.20 

 
0.51±0.33 

 
0.54±0.32 

 
0.33±0.19 

 
The computed quantitative measures imply that the proposed model has had better performance in estimating the 
Rectus- Femoris muscle activity.  
In the next step, the effectiveness of the utilized compensatory fuzzy system assessed. The performance of the 
HOPF oscillator lonely and without adding the fuzzy compensatory system assessed.   
In the following tables (3, 4), the mean and standard deviation values of the computed correlation coefficient and the 
RMSE related to each muscle in each subject shown, while no fuzzy compensatory system has used. The tables (3, 
4) elucidate that the model performance has decayed. The achieved results elucidate the importance of the designed 
fuzzy compensator. Therefore, adding a fuzzy compensator to cope with the unmolded dynamics seems to be 
necessary for the proposed model. Such results can ratify what Figures 6 and 7 intuitively demonstrate. 

Table 3. The mean value at standard deviation and computed correlation coefficient related to each subject without the fuzzy compensator 
  

Subject1 
 

Subject2 
 

Subject3 
 

Subject4 
 

Subject5 
 

Rectus- 
Femoris 

 
0.50± 0.28 

 
0.20±0.24 

 
0.53±0.33 

 
0.34±0.27 

 
0.33±0.25 

Where cov means covariance, Corr is the usual symbol 
for correlation and sigma is the standard deviation 
symbol.

The root mean square error (RMSE) is a frequently 
used measure of the difference between values predicted 
by a model and the values observed from the environment 
that modeled, and obtained from the following equation: 
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fuzzy compensator. Therefore, adding a fuzzy compensator to cope with the unmolded dynamics seems to be 
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Where xi, yi, and ωi describe the ith adaptive Hopf oscillator. 𝑟𝑟𝑖𝑖=√𝑥𝑥2 + 𝑦𝑦2and ε are positive coupling constants 
controlling the learning rate, and τ is a coupling constant. Coupling all the oscillators with oscillator 0 assure stable 
phase-locked oscillations.31  
τ is a coupling constant and 𝑟𝑟𝑖𝑖=√𝑥𝑥2 + 𝑦𝑦2 and ε are positive coupling constants controlling the learning rate. All 
employed oscillators coupled with oscillator 0. Such couplings give assurance of stability of phase-locked 
oscillations.31 

Designed Fuzzy Logic System 
Fuzzy logic is a kind of logic that not only includes true or false values; also it uses a continuous range of truth 
values in the interval [0, 1]. Furthermore, it lets us combine numerical data and linguistic knowledge 
systematically.32 Fuzzy systems based on human knowledge in the form of if-then rules. Mamdani fuzzy system has 
used in this study. The general structure of fuzzy rules in this research is as follows: 

.Cμ is Cμ then Bμis and  ∆  Aμ is dθ If 
In the fuzzy rules,  θd desired angle of the ankle in the healthy subjects, Δ is the angle difference of the ankle in the 
healthy subjects and patients and  μC as the output of fuzzy logic system determines the compensatory signal 
correcting the muscle activity pattern generated by HOPF oscillator activity derived from healthy individuals. 
Finally, some membership functions assigned for θd, Δ, and μC  (μA, μB, μC). 

Figure 4. The membership function of fuzzy rules 

The following lookup table shows the designed fuzzy rules. According to this table, the rules with less importance 
eliminated. The rules were extracted using analyzing the range of recorded human data related to ankle joint 
movement. At first, the range of ankle joint motion during each gait phase was specified using healthy human data 
analyses. Then, the fuzzy rules were designed to adjust the output of the HOPF oscillator according to the difference 
between the actual joint angle and the specified range corresponding to that sample time. The fuzzy system as a 
compensatory controller corrects the muscle activation pattern whenever the ankle joint violates the specific 
extremes. This correcting process by the fuzzy logic system is carried out in an online manner to reduce the possible 
difference between the muscle activation pattern obtained using healthy human data. 
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Results 

Figures 6 and 7 show three sample obtained results. Figure 6 and 7 showed the model outputs along with the 
extracted Rectus- Femoris muscle activation pattern and extracted Tibialis- Anterior muscle activation pattern 
respectively. Figure 6 shows the model output while the fuzzy compensatory system has adopted and Figure 7 
shows the model output while no fuzzy compensatory system has adopted. The activation patterns extracted from 
actual data recorded from the healthy subjects during walking. It took 20 steps to walk during each trial. 
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For the sake of quantitative assessment, the correlation coefficient and root mean square error (RMSE) computed. 
The correlation coefficient, which is the covariance of the variables divided by the product of their standard 
deviations, between two variables X and Y can be computed using the following equation: 
 

𝑐𝑐𝑐𝑐𝑐𝑐(𝑋𝑋,𝑌𝑌)
𝛿𝛿𝑋𝑋𝛿𝛿𝑌𝑌

Where cov means covariance, Corr is the usual symbol for correlation and sigma is the standard deviation symbol. 
The Root Mean Square Error (RMSE) is a frequently used measure of the difference between values predicted by a 
model and the values observed from the environment that modeled, and obtained from the following equation:  
 

RMSE =√∑ (𝑥𝑥𝑖𝑖−𝑥̇𝑥𝑖𝑖)2𝑛𝑛
𝑖𝑖=1

𝑛𝑛  

Where xi  is the measured value, 𝑥̇𝑥𝑖𝑖  is the predicted value, and n is the number of data samples. 
According to the results, the generated activity pattern by the proposed model cannot follow the desired activity of 
the Tibialis- Anterior muscle as well as rectus-femoris muscle. The Tables 1 and 2 show the mean value and 
standard deviation of the computed correlation coefficient and RMSE related to each muscle in all subjects.  
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Figure 7. The desired activation pattern of the  Rectus- Femoris muscle (a,b), and Tibialis- Anterior muscle (c,d), in a sample healthy subject 
along with the activation pattern generated by the Hopf oscillator without using a fuzzy compensator. 

It observed that adding a constant value (about 2) to the output value of the fuzzy compensatory system could nearly 
improve the model performance. It can be attributed to the shortcoming of the fuzzy compensatory system to 
overcome the errors emanating from DC drift between the desired muscle activation pattern and model output. 

 

Discussion and Conclusion 
 
Functional electrical stimulation is one of the well-known solutions applied for gait correction in patients with drop-
foot. One of the main restrictions of FES, which limit the prevalence of FES clinical applications, is the online 
optimization of muscle stimulation profile. One recently raised idea is designing the stimulation profile using muscle 
activation profile of a healthy person.33 A complementary idea is designing the stimulation pattern of a paralyzed 
muscle using muscle activation pattern of the corresponding muscle of contralateral limb; This is a plausible idea, 
but time-varying properties of muscles may undermine the performance of an FES system with time-invariant 
stimulation pattern. Accordingly, utilizing an adaptive model generating the desired muscle activation pattern in an 
online manner can be a good idea. In this study, the adaptive neural oscillator has adopted as the core of the model. 
However, a compensatory part was added to improve the model performance based on comparing the joint 
movement pattern with the appropriate laws of the model parameters designed. The kinematic information of the 
joint was incorporated to update the model instead of model output error. In this manner, adaptation laws update the 
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compensator to cope with the unmolded dynamics seems 
to be necessary for the proposed model. Such results can 
ratify what Figures 6 and 7 intuitively demonstrate.

It can conclude that the proposed model, not only with 
but also without using the added fuzzy compensator, has 
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had better performance in estimating the rectus-femoris 
muscle activation pattern. Such results can attribute to the 
apparent similarity between the Hopf oscillators’ dynamic 
and the dynamics of the rectus-femoris muscle activity. It 
may be because of the rhythmic behavior of the rectus-
femoris muscle activity during the gait.

It observed that adding a constant value (about 2) 
to the output value of the fuzzy compensatory system 
could nearly improve the model performance. It can be 
attributed to the shortcoming of the fuzzy compensatory 
system to overcome the errors emanating from DC drift 
between the desired muscle activation pattern and model 
output.

Discussion and Conclusion
Functional electrical stimulation is one of the well-known 
solutions applied for gait correction in patients with 
drop-foot. One of the main restrictions of FES, which 
limit the prevalence of FES clinical applications, is the 
online optimization of muscle stimulation profile. One 
recently raised idea is designing the stimulation profile 
using muscle activation profile of a healthy person.33 A 
complementary idea is designing the stimulation pattern 
of a paralyzed muscle using muscle activation pattern of 
the corresponding muscle of contralateral limb; This is 
a plausible idea, but time-varying properties of muscles 
may undermine the performance of an FES system 
with time-invariant stimulation pattern. Accordingly, 
utilizing an adaptive model generating the desired muscle 

activation pattern in an online manner can be a good idea. 
In this study, the adaptive neural oscillator has adopted 
as the core of the model. However, a compensatory part 
was added to improve the model performance based 
on comparing the joint movement pattern with the 
appropriate laws of the model parameters designed. The 
kinematic information of the joint was incorporated to 
update the model instead of model output error. In this 
manner, adaptation laws update the compensatory part 
parameters in a way that generated muscle activation 
pattern, as the input of the muscle-joint system, is adjusted 
by considering the muscle-joint output dynamics; This 
is an innovative attitude in parameter optimization. 
Since in practical uses of rehabilitation systems the joint 
movements, showing the elicited muscle-joint dynamics, 
may be disturbed by external disturbance or changing the 
context, such updating process can cope with the factors 
destabilizing the mechanical stability of the human 
movement. Accordingly, using such a model, someone can 
implement the FES systems with adaptable stimulation 
pattern, stimulation pattern of which optimized in an 
online manner. 

One intriguing achieved result shows better performance 
of the designed model in tracking the activation pattern 
of the rectus-femoris muscle in comparison with the TA; 
This can lie in this fact that when an oscillator is the core 
of such a model, the dynamics of the model output is 
more similar to a rhythmic dynamics. According to the 
recorded human data, the activation pattern of the rectus-

Table 1. The Mean (SD) and Computed Correlation Coefficient Related to Each Subject With Fuzzy Compensator

Subject1 Subject2 Subject3 Subject4 Subject5

Rectus-femuris 0.59  ± 0.19 0.58±0.17 0.65 ± 0.25 0.65 ± 0.13 0.61 ± 0.30

Tibialis-anterior 0.52 ± 0.17 0.45 ± 0.14 0.61 ± 0.08 0.36 ± 0.32  0.34 ± 0.20

Table 3. The Mean (SD) and Computed RMSE Related to Each Subject Without Fuzzy Compensator

Subject1 Subject2 Subject3 Subject4 Subject5

Rectus-femuris 0.50± 0.28 0.20±0.24 0.53±0.33 0.34±0.27 0.33±0.25

Tibialis-anterior 0.14±0.28 -0.03±0.20 0.24±0.26 -0.09±0.22 -0.03±0.20

Table 4. The Mean (SD) and Computed RMSE Related to Each Subject Without Fuzzy Compensator

Subject1 Subject2 Subject3 Subject4 Subject5

Rectus-femuris 2.10± 0.02 2.12±0.05 2.16±0.03 2.13±0.03 2.12±0.03

Tibialis-anterior 2.12±0.02 2.16±0.03 2.15±0.03 2.14±0.01 2.15±0.24

Table 2. The Mean (SD) and Computed RMSE Related to Each Subject With Fuzzy Compensator

Subject1 Subject2 Subject3 Subject4 Subject5

Rectus-femuris 0.72± 0.97 0.30±0.24 0.30±0.14 0.27±0.17 0.28±0.15

Tibialis-anterior 0.82±0.85 0.34±0.20 0.51±0.33 0.54±0.32 0.33±0.19
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femoris is more similar to a rhythmic pattern and can 
certify the results. 

The achieved results prove that such a proposed 
model may improve the performance of FES systems 
provided that the stimulation pattern extracted from 
determined muscle activation pattern through a suitable 
transformation. Naturally, the next step of this research is 
the practical implementation of an FES system based on 
the proposed model.
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