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Abstract 

Background: In regard of chloride channel electrophysiological behavior importance in cellular homeostasis 

maintenance, some of diseases appearance because of chloride channels impairment, also reports of 

synchronization between chloride channels impairment and misadjusted pH and that presumably acid or basic 

pH in cytoplasmic and endoplasmic reticulum luminal spaces are effective on this behavior, current study was 

performed. 
Materials and Methods: Research was performed by experimental method. Vesicles from rat liver tissue 

endoplasmic reticulum were extracted and assessed in 30 samples in 6 groups. Electrophysiological behaviors 

of channels were measured in control, acidic and basic pH in cis and Trans environments and according of 

channel conductance and Po this behavior was determined and judged statistically. Data were filtered at 1 kHz 

and stored at a sampling rate of 10 kHz for offline analysis by PClamp9. Statistical analysis was performed 

based on Markov noise free single channel analysis. 

Results: Channel conductance was 72 pS and its current – Voltage relation curve was linear. Channel has 

Voltage dependent behavior and has grater Po in positive Voltages. Channel conductance in acidic pH 

remained at 72 pS as of control situation. Channel Po was not changed. In basic pH these findings were also 

repeated. Also, in cis and Trans spaces these behaviors were sawed. 

Conclusion: It seems that in pH stream from 6 to 8.5, current channel electrophysiological behavior could be 

important in endoplasmic reticulum and cellular homeostasis maintenance especially in positive ion such as 

calcium ion accumulation situation in cytoplasm. 
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Introduction 

It well known that chloride channels have many 

important homeostatic functions in the cell including 

membrane potential determining, cellular volume 

regulation, and transepithelial fluid secretion pH 

regulation and calcium ion homeostasis1, 2. These 

channels provide counter-ion balancing during proton 
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exchange in vesicles loading or acidification as in 

calcium ion release and uptake3. Indicated that there 

is pH=8 in luminal space of endoplasmic reticulum 

(ER) which can disturb calcium ion homeostasis in 

this organelle by sarco/endoplasmic reticulum Ca2+-

ATPase (SERCA) pump inhibition4. Because of 

chloride channels impact on pH adjustment, these 

channels affect many pH-related phenomenon such 

as protein synthesis and folding, vesicle loading, 

conduction of vesicles in right destination, 

phospholipid composition arrangement different 

cellular membranous compartments, and calcium ion 

homeostasis5, 6.  

There are some scientific reports about apoptosis 

occurrence because of cytoplasmic acidosis and 

calcium ion homeostasis disruption7, 8. Due to 

intracellular acidification, apoptosis can occur by 

caspase dependent or nondependent routes9. This 

acidification-induced apoptosis is accompanied with 

degenerative diseases such as neurodegenerative 

diseases10. Chloride channels impairment is indicated 

in some diseases such as cystis fibrosis, ostepetrosis, 

macular degeneration, muscular myotonia, renal 

stones, and hyperecplexia11. In some of these 

diseases chloride channels impairment is 

accompanied by pH disadjustment. Beside of 

diseases mentioned above pH disadjustment is 

indicated in some of other diseases including cancer. 

Regulation of pH is important in both physiological 

and pathological situations. It is demonstrated that 

cancer cells established a changed pH gradient. This 

new pH gradient provides ability of fast growth and 

protein synthesis, invasion, migration and 

metastasis12, 13.  

Chloride channels dysfunction involved in some 

heart disease including hypertrophy, arrhythmia, 

ischemia, and heart frailer15-20. Research on chloride 

channels has begun from 197921 which scientists 

have identified Voltage-gated chloride channel in 

198022. In addition, researchers have cloned CFTR 

gene in 198923. Today we know that there are five 

families of chloride channels including ligand-gated 

chloride channels, Voltage-gated chloride channels 

(CLCs), Cystic fibrosis transmembrane conductance 

regulator (CFTR), calcium activated chloride 

channels (CaCCs) and intracellular chloride channels 

(CLIC)18. These channels are distributed all over the 

cell. From cellular compartments we choice ER for 

research because of its fundamental homeostatic 

functions and its structural-functional relation with 

other cellular organelles and plasma membrane. It is 

indicated that mitochondrial separation from ER can 

cause calcium homeostasis disruption and apoptosis 

induction24-26. ER apoptosis induction by cytoplasmic 

acidosis, ER stress effect in physiopathology of heart 

and neuro degenerative disease and direct relation 

between ER homeostasis disruption and tumorigenesis 

are the important reasons for our choice27-30. 

Biophysical, pharmacological, and regulatory agents 

can affect electrophysiological behavior of ion 

channels. It is obvious that precise recognition of these 

agents could be very beneficial in identification of 

channel physiology and pathophysiology so in related 

disease treatment.  

Ultimately in regard of synchronization between pH 

regulation and chloride channels function in the cell 

also, probability of cytoplasmic and luminal pH effect 

on electrophysiological behavior of chloride channel, 

current study was performed in Shahid Beheshty 

university of medical science. 

Methods 

HEPES, Trizma Base (2-amino-2-[hydroxymethyl]-

1,3-propanediol), sucrose, imidazole, pyrophosphate 

and potassium chloride were purchased from Sigma 

(St. Louis, MO, USA) and n-Decane and hydrochloric 

acid was obtained from Merck (Darmstadt, Germany). 

Salt and solvent were analytical grade (Sigma, St. 

Louis, MO, USA). Animal experiments were 

conformed according to the National Institutes of 

Health Guidelines for the Care and Use of Laboratory 

Animals and approved by the Animal Ethics 

Committee of Shahid Beheshti University of Medical 

Sciences (Tehran, Iran).  

ER proteins extraction: Male Wistar rats, weighting 

180–200 grams, were used for ER extraction. Hepatic 

endoplasmic reticulum vesicles were extracted by the 

method of Kan et al.31. Rats were anesthetized by 

ether, and the livers were rapidly removed and 

homogenized in 50 ml ice-cold sucrose (0.25 M) 

solution at 2850 rpm using a potter homogenizer 

(Potter-Elvehjem Homogenizer, Iran). The 

homogenate was centrifuged at 8700 ×g for 13 

minutes. The supernatant was centrifuged at 110,000 
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×g at 4°C for 60 min (Beckman model J-21B, USA). 

The pellet was gently resuspended in 9 ml ice-cold 2 

M sucrose by a glass homogenizer to obtain a 

homogenous suspension. Subsequently, in sucrose 

gradient conditions, the suspension was centrifuged 

at 300,000 ×g for 60 min, and the obtained pellet was 

dissolved in 20 ml sucrose 0.25 mM + imidazole 3 

mM + Na pyrophosphate 0.5 mM. The solution was 

then centrifuged three times at 140,000 ×g for 40 

min. The obtained pellet (rough endoplasmic 

reticulum microsomes microsomes) was dissolved in 

1 ml sucrose 0.25 mM + imidazole 3 mM at a final 

concentration of 7 mg/ml. Rough microsomes were 

stored in 10-µl aliquots in 250 mM sucrose/3 mM 

imidazole (pH 7.4) at -80°C until use. 

Lipid preparation: L-α-phosphatidylcholine (L-α-

lecithin) was extracted from fresh egg yolk by the 

procedure described by Singleton et al.32. The 

endoplasmic reticulum membrane was relatively 

enriched in the neutral zwitterionic phospholipids 

having large polars head groups such as L-α-

phosphatidylcholine. 

Planar lipid bilayers and vesicle fusion: 

Experiments were performed by using black (bilayer) 

lipid membrane technique. Planar phospholipid 

bilayers were formed in a 300 µm-diameter hole 

drilled in a Delrin partition, which separated two 

chambers, cis (cytoplasmic side) and trans (luminal 

side). Chambers contained 4 ml KCl 200 mM cis/50 

mM trans. Under these conditions, there will be a net 

movement of water across the bilayer from trans to 

cis face. Vesicles in the pre-fusion state will swell if 

water enters the lumen across the bilayer33. Cis and 

Trans solutions contained 10 µM Ca2+. The pH on 

both sides was adjusted to 7.4 with Tris–HEPES. 

Planar phospholipid bilayers were painted using a 

suspension of L-α-lecithin in Decane at a 

concentration of 25 mg/ml. The indication of the 

thickness of the bilayer membrane formed across the 

hole was obtained by monitoring capacitance. A low 

frequency (1-10 Hz) and a low amplitude (5-20 mV 

peak-to-peaks) triangular wave were used. Typical 

capacitance values ranged from 200 to 300 pF. 

Fusion of the vesicles was initiated mechanically by 

gently touching the bilayer from the cis face using a 

small stainless steel wire of 150 µm diameter, on the 

tip of which a small drop of the vesicle-containing 

solution was deposited. 

Electrical recording: BC-525D amplifier (Warner 

Instrument, USA) in the voltage clamp mode was used 

to amplify the current and to control the voltage across 

the bilayer through Ag/AgCl electrodes. The cis 

electrode was set to a command voltage relative to the 

Trans electrode which was grounded. 

PH adjustment in luminal (Trans) and cytoplasmic 

(cis) faces: After single-channel recording of channel 

in neutral pH (7.4 in cis and Trans solution) recording 

was repeated in pH of 6 and 8.5 in cis and Trans 

environment. Acidic pH was prepared by adding HCl 

and basic pH was obtained by addition of KOH in both 

cis and trans chambers.  

Data analysis: The recordings were filtered at 1 kHz 

with a four-pole Bessel low-pass filter, digitized at a 

sampling rate of 10 kHz and stored on a personal 

computer for off-line analysis by PClamp9 (Axon 

Instruments Inc, USA). Significant difference between 

control and acidic or basic pH was assessed by Student 

T-Test. The results were expressed as means ± 

standard error of the means (SEM) and P< 0.05 values 

considered significant. 

Results 

Biophysical properties of ion channel: Our results 

indicated a chloride channel in ER with conductance 

of 72 pS when the Trans chamber was voltage-

clamped relative to the cis chamber, which was 

grounded. Figure 1 shows single-channel currents 

recorded at various holding potential conditions 

(50/200 mM KCl trans/cis) at various holding 

potentials (-60 mV to +50 mV) following 

incorporation of rat ER membrane vesicles into planar 

bilayers. Sing-channel current voltage relationship was 

illustrated in Figure 3. A Zero-current potential value 

close to +30 mV, the equilibrium potential expected 

for chloride ions under the prevailing ionic conditions 

was indicated. Furthermore the reverse close to +30 

mV indicated unidirectional reconstitution of the 

channel into bilayer membrane.  

The channel gating behavior was voltage dependent 

with decreased amounts at increasingly negative 

potential values. The current-voltage (I-V) relation 

was linear and the slope conductance was 72 pS with 

positive reversal potential close to +30 mV that 

illustrates anionic selectivity of this channel under 
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these conditions. The open probabilities (Po) of this 

channel at various holding potentials and its fitted 

curve were showed in figure 2. The Po curve was 

fitted by Boltzmann Z-delta equation.  

Pharmacological properties of the ion channel: 

According to Figure 4 and Figure 5, this channel was 

blocked by addition of either 300 µm NPPB or 

.0 1mM DIDS to cytoplasmic face (cis chamber). 

Also as indicated in Figure 6 and 7, current study 

indicated that this channel has no responsiveness to 

environment pH differences. There was no 

significant difference in electrophysiological 

properties of channel including conductance or 

gating behavior in natural (7.4), acidic (6.5) or basic   

(8.5) pH. This no responsiveness to pH was appeared 

in both luminal (Trans) and cytoplasmic (cis) 

environments. On the other hand by adding of 50 mM 

phosphate ion to cis chamber there was elucidated that 

this ion has no significant effect on 

electrophysiological behavior of current chloride 

channel. 

Discussion 

Research was indicated that acidic or basic pH in 

 
 

Figure 1. Single-channel currents recorded at various holding 

potential conditions  (50/200 mM KCl trans/cis) at various 

holding potentials (-60 mV to +50 mV). Data are mean ± S.E. 

(n = 6). The – indicates the closed state. 

 

 
 

Figure 5. The effect of DIDS on channel activity is indicated at 

+10 and -40 mV. Channel activity was inhibited by addition of 

1mM DIDS to cis chamber. Closed level is indicated by  ̶. 

 

 
 

Figure 4. The effects of NPPB on channel activity at different 

voltages. Channel activities were completely inhibited after the 

addition of 300µm NPPB to cis face. Closed levels are indicated 

by  .̶ 

 

 
 

Figure 2. The average steady-state of open probability values 

as a function of the holding potential for full open conducting 

state obtained from sex different experiments. 

 

 
 

Figure 2. The average steady-state of open probability values 

as a function of the holding potential for full open conducting 

state obtained from sex different experiments. 
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either cis (cytoplasmic) and Trans (luminal) spaces 

had not affect electrophysiological behavior of 

current chloride channel including conductance and 

open probability (Po) and these values are equal to 

theirs control amounts. In pH stream from 6 to 8.5 

there was no effect of proton or hydroxyl ion on 

channel gating or conductance. One probability is the 

impact of membrane surface charges on pH changes 

buffering. The other probability of non pH sensitivity 

of current chloride channel can be referred to absence 

of proton affecting site in related subunit of channel 

structure. Our results are limited to pH stream of 6 to 

8.5 and probability of channel pH sensitivity is not 

rejected beyond this limitation.  

It is previously indicated that among chloride channels 

only CFTR, CLIC1, CLC-2, CLC-3, CLC-4, CLC-5 

and CLC-7 are expressed in hepatocyte34. On the other 

hand, there is demonstrated that rat hepatocyte 

 
 

Figure 7. The effect of basic pH on channel activity is indicated at -30, -40 mV and +50 mV. Either in cytoplasmic (cis) or in luminal (Trans) 

environment there are no basic pH effects on electrophysiological activity of this chloride channel. Data are mean ± S.E. (n = 4). Closed level 

is indicated by .̶ 

 

 
 

Figure 6. The effect of acidic pH on channel activity is indicated at -30, -40 mV and +10 mV. Either in cytoplasmic (cis) or in luminal (Trans) 

environment there are no acidic pH effects on electrophysiological activity of this chloride channel. Data are mean ± S.E. (n = 4).  Closed 

level is indicated by .̶ 
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expresses a lot of CLC-435. Because our channel 

inhibited by DIDS so it could not belong to CFTR or 

CLIC families36, 37. It seems that belonging of our 

study chloride channel to CLC family is more 

probable. Among hepatocyte CLCs, CLC-2 is 

specially located in plasma membrane and is not 

belonging to ER38. CLC-5 has more proton/chloride 

exchanger function also; CLC-7 requires 

Osteopetrosis-associated transmembrane protein 1 

(Ostm-1) co-expression to be functional39. CLC-4 

has more expression in rat hepatocyte and was 

indicated in ER40. Beside of great structural 

similarity between CLC-3 and CLC-4, the precise 

identification of our study channel category requires 

more investigation41.  

Previous studies have been indicated that among ion 

channels only calcium-activated chloride channels 

(CaCCs), inward rectifier potassium channels (Kir), 

acid-sensing ion channels (ASIC), N-Methyl-D-

aspartate (NMDA) receptors, transient receptor 

potential (TRP) and CLCs are pH sensitive42. In 

addition, studies were indicated CFTR and 

mitochondrial Voltage-dependent anion channel 

(VDAC) pH sensitivity43-45. Scientists were 

demonstrated that CFTR senses intracellular pH 

directly. Due to increase or decrease in MgATP 

affinity to CFTR nucleotide binding domain 2 

(NBD2), its electrophysiological function was 

activated in intracellular acidic pH and decreased in 

intracellular basic pH respectively43. VDAC closing 

in intracellular acidosis during ischemia prevents 

cellular apoptosis induction44. It is demonstrated that 

pH effect on CaCCs is indirect and is by the aim of 

pH affecting calcium channels46. As mentioned 

above, Voltage gated chloride channels are pH 

sensitive. Researchers were indicated that CLC-2 is 

inhibited by extracellular acidic or basic pH. They 

were argued that inhibition of channel function in 

basic pH is because of direct occlusion of channel 

pore by hydroxyl ion or Voltage- dependent gating 

curve displacement due to changes in membrane 

surface charges. Also, they were suggested that 

inhibition in acidic pH is because of protonation 

derived fixation of gating machinery moving part47. 

Beside of probability of current channel belonging to 

CLCs family, it has no pH sensitivity. We speculate 

that presumably channel separation from its native 

situation and only using of L-α-phosphatidylcholine 

(L-α-lecithin) for artificial membrane formation could 

be effective in difference of current channel behavior. 

On the other hand the probability of pH sensitivity 

beyond pH stream from 6 to 8.5 is not rejected. In 

current study increase of acidic or basic pH beyond 

mentioned pH stream was caused bilayer membrane 

instability and theirs data were not reliable. Current 

study suggests that non pH sensitivity in pH stream of 

6 to 8.5 could be related to fixation of gating 

machinery moving part due to protonation or change 

of membrane surface charges. According to channel 

greater open probability during positive Voltages it 

seems that channel has more activation in depolarized 

situations such as positive charges accumulation as 

indicated in calcium homeostasis disturbances so this 

channel could be important in apoptosis regulation48-

51.  

Previous studies were bolded pH importance in some 

cellular phenomenon such as phagocytosis, protein 

synthesis, folding and degradation, vesicle loading and 

conducting in right destinations53, 53. On the other 

hand, basic pH establishment is favorable during 

cellular growth and differentiation54. Beside of such 

physiological situations, in some of pathological 

conditions including cancer a new pH gradient is 

established. Due to this ability, cancer cells can 

increase their growth, invasion, migration, metastasis, 

and drug resistance55-57. It is obvious that all of agents 

contributing in new pH gradient establishment could 

be important drug targets in cancer treatment58-59. 

Because of current channel functionality in pH stream 

of 6 to 8.5, overexpression of this channel is probable 

in cancer so more investigation about this hypothesis 

is suggested. Also, in some diseases there is 

synchronization between chloride channels 

impairment and pH disadjustment11. It is presumably 

useful to examine this channel overexpression in such 

diseases treatment.  

In conclusion our study indicate that hepatocyte 

endoplasmic reticulum chloride channel has no pH 

sensitivity in either cytoplasmic or luminal spaces. 

This could be from buffering effect of membrane 

surface charges during proton or hydroxyl ion 

concentration changes, or could be from fixation of 

gating machinery moving part during protonation. 

According to current channel more open probability in 
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positive Voltages seems to be physiologically 

important in depolarized situations as accumulation 

of calcium ion and in apoptosis regulation. 

Ultimately our study suggests more investigations 

about this channel as an important drug target in 

diseases related to changed pH gradient including 

cancer also, in diseases of chloride channels 

impairments are accompanied by pH regulation 

disturbances. 

Conclusion 

Current research indicated that in pH stream from 6 

to 8.5, this 72 pS chloride channel 

electrophysiological behavior could be important in 

endoplasmic reticulum and cellular homeostasis 

maintenance especially in positive ion such as 

calcium ion accumulation situation in cytoplasm. 
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