
Men’s Health Journal. 2021; 5(1): e9

ORIGINAL RESEARCH

Machine Learning Approaches to predict Intra-Uterine In-
semination Success Rate- Application of Artificial Intelli-
gence in Infertility
Farzad Allameh1, Morteza Fallah-Karkan2, Shahrzad Zadeh Modarres3, Amir Reza Abedi4∗, Mohammad Javad
Eslami5, Mohammad Reza Hajian5, Mehdi Dadpour6, Leyla Zareian7

1. Men’s Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

2. Shahid Beheshti hospital, Guilan university of Medical Sciences, Rasht, Iran.

3. Clinical Research Development Center, Mahdiyeh Educational Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

4. Department of Infertility and Assisted Reproductive Technology, Taleghani Hospital, Shahid Beheshti University of Medical Sciences,
Tehran, Iran.

5. School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.

6. Urology and Nephrology Research Center, Shahid Beheshti University of medical Sciences, Tehran, Iran.

7. Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran.

Received: January 2021; Accepted: February 2021; Published online: February 2021

Abstract: Introduction: Assisted Reproductive Technology (ART) has been widely utilized for infertility management. De-
spite its low success rate, Intra-Uterine Insemination (IUI) is one of the first alternatives and most important
approaches regarding many cases of infertility treatment. Given the numerous influencing factors and limita-
tions associated with time and resources, the development of a reliable model to predict the success rate of ART
methods can significantly contribute to decision-making processes. Materials and methods: We reviewed the
demographic, clinical, and laboratory data regarding 157 IUI treatment cycles among 124 women using their
partner’s sperm from May2017 to June2019. Primary outcome measures were clinical pregnancy and live birth.
Some prediction models were constructed and compared to the logistic regression analysis. Result: Woman’s
mean age was 30.1 ± 5.2 years and the infertility had a female cause in 24.3% of the cases, male cause in 32.6%
of cases, and combined causes in 32.6% of the cases. Concerning the first IUI cycle, the clinical pregnancy rate
per cycle was 16.9% (N= 21). Data were prepared according to cross-industry standard process for data mining
(CRISP-DM) methodology, and the following models were fitted to the data: J48 Decision Tree, Perceptron Mul-
tilayer (MLP) Neural Network, Support Vector Machine (SVM) with radial basis function (RBF) kernel, K-Nearest
Neighbors (KNN) with one neighborhood, and Bayesian Network. J48 Decision Tree, with a sensitivity of 95%
and specificity of 98%, had the most optimal performance, and the KNN model was the weakest one. Conclu-
sion: To predict the results of IUI as a simple and less invasive therapy for infertile couples, some models were
applied based on artificial intelligence and J48 Decision Tree was recommended.
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1. Introduction

Based on a global survey, 8-12% of couples in the reproduc-

tive age range worldwide (1-4) and up to 20.2% of the Iranian

population (5), face infertility. Over the past 40 years, As-

sisted Reproductive Technology (ART) has been widely uti-
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lized by healthcare providers for the management of infertil-

ity. ART includes all fertility treatments in which either eggs

or embryos are handled.

More advanced ART techniques, such as In Vitro Fertiliza-

tion (IVF) and Intra-Cytoplasmic Sperm Injection (ICSI) have

been developed over the past decades. However, due to its

characteristics of being less invasive and less costly, Intra-

Uterine Insemination (IUI) is considered an important ap-

proach and a first choice in many infertility cases. Some

indications include male subfertility, cervical factor infertil-

ity, human immunodeficiency virus (HIV) infection, require-

ment of donor sperm, and immunological infertility (6-10).

Although IUI is more affordable and less invasive when com-

pared to other ART methods, the pregnancy success rate is

relatively low in each cycle (11). According to the European

Society of Human Reproduction and Embryology, although

IUI success in terms of pregnancy rate per cycle differs based

on various factors, it can reach up to 16.4%. (12, 13) This

rate was reported 16.5% and 22% in two Iranian population-

based studies (14, 15). Several factors have been associated

with the likelihood of successful pregnancy following IUI.

woman’s age, ovarian reserve and stimulation, Human Chori-

onic Gonadotropin Therapy, duration and cause of infertil-

ity, endometrial thickness, and the number of high-quality

motile spermatozoa (16-20) are examples of such factors.

Due to the limitations associated with time, money, and fa-

cilities, it is highly necessary to develop a reliable model to

predict the success rate of ART methods based on variable

individual factors to assist us in the decision-making pro-

cess. Artificial intelligence (AI) refers to complex software

that performs tasks in a way similar to human brains, often

by sensing and responding to a feature of their environment.

Numerous methods based on statistical models and AI have

been proposed for this purpose. However, in terms of IUI,

a vast majority of these methods are based on conventional

statistical models such as logistic regression, and no standard

and reliable method for modeling IUI outcomes has been de-

veloped so far (21-23).

Over the recent years, along with the dramatic increase

in biomedical data volume and complexity and the break-

throughs in the field of computer sciences, there is a ten-

dency to utilize computer-based prediction models and ar-

tificial intelligence (AI) systems in medical fields. Artificial

intelligence is identified as a machine’s intellectual capability

to display information by combining learning, self-adapting,

and predicting systems (24, 25). The increase in the factors

affecting the success of ART methods, including IUI, has dra-

matically augmented the amount of biomedical data individ-

ually required to predict the clinical outcome. This makes

it almost impossible for conventional statistical methods to

be effectively used for this purpose, thereby calling for a

more sophisticated method to facilitate effective data analy-

sis. With their complex algorithms, AI systems can detect and

learn the potential pattern and connections among a huge

amount of biomedical data. (26-28) These machines are al-

ready being used in various fields of medical sciences, such

as pharmacology, cardiology, oncology, neurology, stem cells,

and immune therapies. (29-36).

Numerous studies have been performed to predict preg-

nancy after IVF and embryo classification or selection using

AI. However, the literature related to the application of AI to

IUI outcome prediction is rather limited (37-39). Therefore,

we aimed to design a dynamic model to predict IUI outcomes

based on Artificial Intelligence.

2. Materials and methods

We reviewed the demographic, clinical, and laboratory data

regarding 157 IUI treatment cycles in 124 women referred to

the infertility ward of Taleghani hospital located in Tehran,

Iran, in this retrospective cohort study. The records from May

2017 to June 2019 were registered for training the network

and can be used for prediction.

Inclusion criteria was all the couples who underwent IUI in

this time period. Exclusion criteria were severe sperm pa-

rameters abnormality, Globozoospermia, teratozoospermia,

cryptozoospermia as male factors and obstruction of fal-

lopian tube by any reasons, unexplained infertility and ad-

vanced age as female factors and the patients with missing

data. Successful treatment was considered as live birth in the

couples who used maximum three times IUI technique. Fail-

ure to fertilization, still birth and abortion after three times

are described as unsuccessful treatment due to our center

protocols.

The infertility evaluation of each patient included history,

physical examination, two semen analyses, and measure-

ment of serum follicle-stimulating hormone (FSH), luteiniz-

ing hormone (LH), anti-müllerian hormone (AMH), and pro-

lactin (PRL) (normal range 2.5 to 17 ng/ml). The hormonal

ovulatory management for each IUI cycle, semen analyses,

and IUI protocol were the same for all couples. IUI protocol

starts with clomiphene citrate 100mg or letrozole 5mg for 5

days then followed by recombinant FSH 75 or 150 IU one or

two injections.

All patients signed an informed consent before being en-

rolled in the study. The study protocol was approved by our

institutional review board of research and the ethics commit-

tee of Shahid Beheshti University of Medical Sciences (ethics

code: Ir.sbmu.RETECH.REC.1396.628). This study was con-

ducted in accordance with the 1967 Declaration of Helsinki

and its later amendments. Primary outcome measures were

clinical pregnancy and live birth. Some prediction models

were constructed and compared to the logistic regression

analysis.
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3. Results

In the first IUI cycle, women’s mean age was 30.1±5.2 years,

and the mean body mass index (BMI) was 25.5±3.6 kg/m2.

Infertility had a female cause in 24.3% of the cases (bro-

ken down into polycystic ovary syndrome (PCOS), pelvic en-

dometriosis, cervical infertility, and fallopian tube anomalies

to name a few), a male cause in 32.6% of the cases, and com-

bined male and female causes in 32.6% of the cases. In 10.5%

of the cases, no cause could be observed. Based on the first

IUI cycle, the clinical pregnancy rate per cycle was 16.9% (N=

21). Table 1 illustrates the statistical indices related to the

study variables.

3.1. Prediction models

Following data preparation according to cross-industry stan-

dard process for data mining (CRISP-DM) methodology, the

following models were fitted to the data; J48 Decision Tree,

Perceptron Multilayer (MLP) Neural Network, Support Vec-

tor Machine (SVM) with radial basis function (RBF) kernel,

K-Nearest Neighbors with 1 neighborhood, and Bayesian

Network. In these models, optimal parameters for model-

ing were selected from a set of parameters through five-fold

cross-validation. To evaluate the results of the models, the

Leave-One-Out evaluation scheme was employed. The pro-

cedure (IUI) result was considered as the target variables and

other variables as inputs. Table 2 summarizes the results of

the model evaluation.

Comparison of the executed models showed that J48 Deci-

sion Tree had the best performance while the KNN model

was the weakest. The rules derived from the j48 Decision tree

are shown in figure 1.

The tree structure of the above rules is as Figure 2.

The patterns discovered by the Decision Tree for those who

have a successful treatment are as follows: If the infertility

period is less than five years and there is no uterus disease,

the result will be successful. These conditions existed in 22

couples (Rule Support), with 91% (Rule Confidence) having

a successful outcome. Because 17% of the studied couples

had successful treatment results, this pattern presents the

chances of achieving successful treatment more than 5 (lift

index). This indicates that infertility period and uterus dis-

ease had a substantial impact on the treatment outcome.

Moreover, the following two patterns were found for couples

whose treatment fails;

If the infertility period is more than 5 years, the result will be

unsuccessful. These conditions were established in 98 cou-

ples (Rule Support), 99% (Rule Confidence) of couples with

unsuccessful treatment. The lift index in this rule is 1.2.

In another pattern, if the infertility period is more than 5

years, and the condition of the uterus disease is “endometrio-

sis” and “polyp”, the treatment result will be unsuccessful.

Support for this rule is 4, and its 100% confidence and lift in-

dicator is 1.2. Due to the low support of this rule, it can be

said that its generalizability is not as high as the two other

rules.

In the logistic regression, only the infertility period coeffi-

cient was significant (p-value <0.001). This coefficient is -

3.75 with a standard error of 1.07. According to the infertility

period, the odds ratio is 0.02, based on which with the an-

nual increase in infertility period, the chances of a successful

outcome are reduced by 98%. The 95% confidence interval

shows that this chance drop is 80% to 99.7%.

In general, it can be concluded that among the statistical

models and machine learning methods, the decision tree

had the highest overall accuracy, sensitivity, and specificity.

This can be caused by the greedy search of the decision tree

model to find the variable with the highest amount of in-

formation about the response variable. In other models,

due to the simultaneous presence of independent variables

in model learning, the high number of input variables and

their interdependence can lead to poor learning and reduced

model performance. Furthermore, according to the tree rules

and the infertility period coefficient in the logistic regression

model, this variable had a high degree of information con-

cerning the outcome of the treatment.

After testing the relationship between the input variables and

clinical pregnancy, these variables were used to create a logis-

tic regression. Correct prediction rates were greater in neu-

ral network conjectures compared to the logistic regression

model.

4. Discussion

Since IUI is the least invasive procedure in ARTs, it should

be considered as the first-line treatment for those infertility

cases where IUI is indicated. The overall success of IUI varies,

with pregnancy rates ranging from as low as 2.7% to as high

as 66% (14). Based on the previously-discussed reasons, de-

veloping a reliable model to predict the success rate of ART

methods has been always of interest for infertility experts. On

the other hand, the data used to predict the infertility out-

come in such cases are fragmented. This is mostly because

patient data is obtained from several sources, and more im-

portantly, both male and female factors are required for the

final results (40).

So far, several studies have been conducted to provide mod-

els capable of analyzing the value of parameters to predict

the IUI cycle or procedure outcome (41-43). These mod-

els are mostly based on logistic regression and able to iden-

tify and assess the impact of various prognostic factors con-

tributing to the IUI. The main known factors that affect the

outcome of IUI technique are as follows: female and male

ages, body mass index (BMI) in women (<25 kg/m²), length
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and type (secondary) of infertility, sperm motility and nor-

mal sperm morphology count, number of follicles larger than

or equal to 14 mm, serum FSH and Estradiol (E2) level, fre-

quency of uterine contractions, and type of insemination

treatment (41, 44-48). By summing up all these studies, it

is concluded that IUI results can be optimized under certain

conditions, and the variance in the achieved pregnancy rate

might be due to performing IUI under non-identical condi-

tions where the presence of any of these factors can affect

the outcome. None of these studies, on the other hand, has

provided a reliable model for predicting the procedure out-

come based on individuals’ data. In this study, J48 Decision

Tree, MLP Neural Network, SVM with RBF kernel, KNN with

one neighborhood, and Bayesian Network. J48 Decision Tree,

with a sensitivity of 95% and specificity of 98%, had the most

optimal performance, and the KNN model was the weakest

one.

In a systematic review by Leushuis et al., of the 29 predic-

tion models identified in reproductive medicine, only 8 were

externally validated. This means that the validity was as-

sessed in populations other than the one in which the model

was used, and only three had good predictive performance

(Stolwijk et al., 1996; Templeton et al., 1996; Hunault et al.,

2002a) and applicable as a reliable guide for decision mak-

ing in fertility treatment (49). Among these three studies,

only one was about IUI outcome prediction. They developed

a model based on logistic regression analysis and showed

that by identifying and selecting prognostic factors, their pro-

posed model was able to distinguish between couples with

good or poor prognosis (50).

Conventional statistical models such as regression models

are limited in predicting the efficacy of ART treatment. This

has augmented the use of more advanced data-mining and

artificial intelligence methods for the outcome prediction of

infertility treatment. However, previous studies were mostly

focused on the use of these methods in IVF outcome predic-

tion (39, 51, 52) while these systems have been rarely applied

to IUI.

It is in fact a simulation of the human brain via modeling the

neurons in which each neuron works as a processing unit.

Multi-layer perceptron (MLP) neural network is one of the

most widely utilized types of networks, and its structure in-

cludes several layers (input, hidden, and output layers) each

with a number of defined activity nodes and functions(53).

The output of each layer is calculated using the sum of the

weighed coefficients in that layer and sent to the next layer

via an activity function(54). When using MLP neural net-

work, this model requires a large data and sample size for

optimal results. Because our data is not large enough, the

model conducted based on MLP neural network was not the

best model in our study.

Nonetheless, Milewska et al. were the pioneers in employing

the more sophisticated analysis methods including artificial

intelligence in predicting IUI treatment outcomes. In 2013,

they provided two systems to analyze the outcomes of IUI

treatment in two groups of patients with good or poor prog-

nosis. They concluded that the k-means algorithm from the

clustering methods was the most optimal alternative for the

selection of patients with good prognosis, and Kohonen Neu-

ral Networks was better to use in selecting groups of patients

with the least probability of pregnancy (55).

The prediction models based on XGBoost or random forest

also had to be examined, but our resources were limited. The

limitations of this study were the small sample size and the

decrease in the use of IUI in infertile couples in the infertil-

ity wards; some physician preferred using methods that are

more successful in the first line of treatment such as Intra-

cytoplasmic sperm injection (ICSI), so we were not able to

reach IUI results in many couples.

5. Conclusion

To predict the results of IUI as a simple and less invasive ther-

apy for infertile couples, we applied some models based on

artificial intelligence and recommended the use of J48 Deci-

sion Tree.
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Table 1: Descriptive Statistics of study variables.

Minimum Maximum Mean Standard Deviation Median
Infertility period (year) 3.000 12.000 7.258 1.999 7.000
Male age 25.000 54.000 34.726 5.362 34.000
Menarche age 9.000 17.000 13.345 1.326 13.000
LH 1.200 52.000 8.815 7.079 8.150
Follicles number 4 26 18 6 18
AMH 0.100 21.300 7.036 4.645 5.900
FSH 1.000 28.000 6.022 4.063 5.394
Sperm count 1.000 100.000 37.829 22.082 35.000
Sperm progressive motility 12.000 100.000 74.935 22.407 80.000
Sperm morphology 1 8.5 6.250 3.511 4.000
Days after LMP 7.000 20.000 12.336 2.182 12.000
Endometer thickness 2.000 12.000 6.977 1.782 7.00
LH: Luteinizing hormone, AMH: anti-müllerian hormone, FSH: Follicle stimulating hormone,
LMP: last menstrual period.

Table 2: Classification performance of Statistical and machine learning models.

Models Overall accuracy Sensitivity Specificity
J48 97% 95% 98%
Bayesian Network 95% 85% 97%
Neural Network 91% 86% 92%
SVM 97% 57% 93%
Logistic Regression 81% 81% 81%
KNN 76% 43% 82%
SVM: Support Vector Machine, KNN: K-Nearest Neighbors.
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Figure 1: The rules derived from the j48 Decision tree.
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Figure 2: Tree structure of the rules.
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