Laser Treatment of Peri-Implantitis: A Literature Review

Sajjad Ashnagar¹, Hessam Nowzari², Hanieh Nokhbatolfoghahaei³, Behnoush Yaghoub Zadeh⁴ Nasim Chiniforush⁵, Nastaran Choukhachi Zadeh⁶

¹Students Scientific Research Center, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran ²Research Department, Taipei Academy of Reconstructive Dentistry, Research Expert, The Italian Ministry of Education and Research, Los Angeles, USA

³Laser Research Center of Dentistry, Dental Research Institute, Tehran University of Medical Sciences, Tehran, Iran ⁴Students Scientific Research Center, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran ⁵Laser Research Center of Dentistry, Dental Research Institute, Tehran University of Medical Sciences, Tehran, Iran ⁶School of Dentistry, Tehran university of Medical Sciences, Tehran, Iran

Abstract:

Peri-implantitis is a state defined as an inflammatory reaction around osseointegrated implants, leading to progressive loss of supporting bone. Various treatment methods are suggested in the treatment of peri-implantitis and clinicians have to choose a method over a large number of treatment protocols. Lasers have shown promising therapeutic effect in treatment of periimplantitis. However, some controversies have been found in clinical outcomes after using lasers. Therefore, we aimed to review the current literature over the past ten years for the use of lasers in treatment of peri-implantitis, via the Pubmed electronic database of the US National Library of Medicine. Fifteen human studies were reviewed. Er:YAG (Erbium-Doped Yttrium Aluminum Garnet), CO₂ (Carbon Dioxide Laser) and Diode lasers were used. Despite inconsistencies and disharmonies among studies in terms of study design, positive treatment outcomes were obvious among the majority of them. However, short period of follow-ups and poor control of plaque index, as a critical confounding factor, were the major problems which these studies suffered from. It seems that one session laser therapy is not adequate for achieving optimal clinical outcome. Further studies with longer periods of follow-ups, intense control of plaque index, and various sessions of laser treatments are needed to clearly illustrate the clinical privilege of laser therapy.

Keywords: peri-implantitides; lasers; dental implants

Please cite this article as follows:

Ashnagar S, Nowzari H, Nokhbatolfoghahaei H, Yaghoub Zadeh B, Chiniforush N, Choukhachi Zadeh N. Laser Treatment of Peri-Implantitis: A Literature Review. J Lasers Med Sci 2014;5(4):153-62

Corresponding Author: Hanieh Nokhbatolfoghahaei, DDS; Laser Research Center of Dentistry, Dental Research Institute, Tehran University of Medical Sciences, Tehran, Iran. Tel: +98-2188015017; Fax: +98-2188994824; E-mail: h-nokhbeh@farabi.tums.ac.ir

Introduction

Dental implants seem to be successful treatments for partial or full edentulous patients. However, even an implant with a successful osseointegration can develop the most common late failure complication, known as peri implantitis.^{1,2} Frequency of peri-implantitis has been reported in the range of 1–19%.³

Peri implantitis is an inflammatory disease that affects both hard and soft tissue and contributes to a progressive bone loss beyond the biologic remodeling around a functioning implant.⁴⁻⁶

Previous periodontal disease, poor oral hygiene, smoking, genetic traits, diabetes, residual cements and occlusal overload are counted as risk indicators which would make someone susceptible to develop peri implantatis, which are similar to those for periodontitis.⁴, ⁶ Microorganisms living on the implant surface are considered to be the initial cause of peri-implantitis.^{7,8} These bacteria form a biofilm which establishes harmful inflammatory response in host and inhibits bone cells reattachment to the implant surface.⁹ When treating this condition in order to reestablish health of the peri implant tissue, it is crucial to not only eliminate the inflamed tissue, but also decontaminate the infected implant surface.

Several approaches for implant decontamination are available, with the ideal one still remaining to be determined.¹⁰ Mechanical debridement, disinfection with chemotherapeutic agents, smoothing implant surface and surgeries aimed to eliminate bacteria and laser therapy should be noted.¹¹⁻¹⁵ Mechanical debridement can be done with carbon, plastic or titanium currets, ultrasonic scaling or powder air abrasion.^{16,17}. Chlorhexidine digluconate, tetracycline fibers and minocycline microspheres seem to have strong disinfecting and bactericidal potential.¹⁸ Efficacy of mechanical or chemical modalities seems to be limited due to resistant bacterial strains, limited access to inflamed area and pharmacologic limitations like in site drug dosage or insufficient anti bacterial effect.^{3, 19} Also mechanical strategies like metallic curetts, ultrasonic metal tip scalers and air powder abrasion may develop a roughened implant surface, which itself increases bacterial colonization and biofilm formation.¹⁸

Recently, a noticeable tendency has urged scientists toward application of laser in order to decontaminate periimplant inflamed area. Lasers can efficiently irradiate small areas of the implant surface which mechanical methods are unable to reach. Improved clinical outcomes are predictable due to selective calculus removal, bactericidal and haemostatic effects of lasers.^{13, 20} In vitro models have proven the efficacy of Er:YAG(Erbium-Doped Yttrium Aluminum Garnet), CO_2 (Carbon Dioxide Laser) and Diode lasers in high or even complete elimination of bacteria loaded titanium disks.²¹ Also microscopic evaluations have ensured that proper application of these lasers do not disturb titanium surface ^{22,23}

When considering utilization of lasers in treatment of peri implantitis, practitioner must take a number of decisions. Type of lasers which include Er:YAG, CO₂, Diode, Er,Cr:YSGG(Erbium, Chromium doped Yttrium Scandium Gallium Garnet) and Nd:YAG (Neodymium-Doped Yttrium Aluminium Garnet). Next is power setting which must disinfect the implant, while being safe for surface texture. Combining laser therapy with other treatment modalities might be indicated.

Inconsistencies in previous studies concerning clinical outcomes and in the settings with which the lasers were operated, led us to review the current literature and provide a concise summary to help while planning treatment strategies.

Methods

To compile this review, a search of the PubMed database of the US National Library of medicine was carried out. The literature search was done on articles published from March 2004 to March 2014. International peer reviewed journal articles related to the use of lasers in the treatment of peri-implantitis were searched. The key words used in this search were: peri-implantitis or periimplantitis or periimplantitis or periimplant or periimplant or periimplant lesions) and (laser or lasers)

During the search in PubMed database, the following filters were applied:

- 1. Language: English language.
- 2. Human studies
- 3. Type of article: randomized-controlled trial, clinical trial, controlled clinical trial, case study, meta-analysis

The search identified a total of 125 articles. Abstracts were read by the authors, and studies, investigating the effect of laser therapy on peri-implantitis were included. Animal studies and review articles were excluded; however bibliographies were searched for any relevant articles. This resulted in 15 articles to analyze.

The following information was extracted from the selected studies:

- Publication details (title, author(s), journal, year, volume, issue number, pages)
- Number and type of implants
- Laser settings
- Experimental Procedures
- Follow up period
- Bleeding on probing
- Plaque index
- Probing depth
- Clinical attachment level
- · Gingival recession
- Bone level

Results

Fifteen human studies were selected for review. A multitude of treatment regimens, including laser irradiation, had been used. Human studies included 9 studies on Er:YAG laser, 3 studies on CO_2 laser and 3 studies on Diode laser. Most of the studies presented positive clinical outcomes in 6 months follow-up.

Number of patients and implants		Implant type	Laser characteristic	Experimental procedures	Follow up	BOP	Plaque index	Pocket probing depth	Clinical attachment level	Gingival recession	Bone level	Comments
42 patients, 100 ma 41, surf surf surf	f ng ng	Not reported (laser Group: machined surface: 41, medium rough surface: 14, Control group: machined surface: 29, medium rough surface: 16)	100 mj Pulse 10 HZ 12.7 (j/cm2)	Removal of Implant supra structures ± Submucosal Glysine (Powder air polishing) ± Laser irradiation	6 months	Base=100% of implants 6m=No BOP in 31% (p<0.001) (But no difference by intervention)	Reduced plaque index (but not statistically significant)	Mean 0.8±0.5 mm reduction (p<0.05)	Not reported	Not reported	No significant change	Significant BOP reduction was observed in both groups, however, Pocket probing depth reduction was not significant.
12 patients Tit 12 (5 (5 (5) implants aci and 2 Sc and 2 Sc implants at cach time	E S S S	Titanium implants (Sandblasted and acid etched (SLA), Screw Vent, Screw Line, Ticer, Frialit))	100 mj Pulse 10 HZ	supragingival professional implant/ tooth cleaning +open flap debriment using plastic currets+ Augmentation+ Laser irradiation	1, 3, 6, 9, 12, 24 months	Mean reduction 0-24 m Mean increase 6-24 months	increased mean values of PI as observed between 6 and 24 months	Mean decrease Mean gain at to 6 months 6 months Decrease Increase from from 6-24 6-24 months months	Mean gain at 6 months Decrease from 6-24 months	Mean increase from 1-24 months	No decrese in radiolucency	Although plaque index increased between Baseline to 3 months, all other variables improved.
20 patients Ti 40 (S implants p 20 patients and 20 implants in cach (parallel design)		Titanium implants (SLA and Titanium plasma sparayed (TPS) surface Straumann) (Intramobile Cylinder (IMZ))	100 mj Pulse 10 HZ	Implant scaling (plastic curette) + chlorhexidine (0.2%) irrigation ± chlorhexidine gel in pocket ± Laser irradiation	3, 6, 12 months	Reduction after 3, 6, 12 m (p<0.01 and 0.001)	Plaque index was significantly higher at 12 months as compared to baseline in both groups	Reduction after 3, 6, 12 (p<0.01)	Gain after 3 m and 6 m (p<0.01) 12 months no significant difference (p>0.05)	Decrease after 3 m (p<0.05) Then remained stable in next follow ups (p>0.05)	Not reported	In group (a) ; 2 patients with 4 implants were discontinued from the study due to persisting pus between 4 and 12 weeks
20 patients Ti 32 32 implants implants and 16 implants in each group (parallel design) All rough All rough	2	(Stranium implants (Straumann) 17 SLA 15 TPS	100 mj Pulse 10 HZ	Plastic curette + chlorhexidine irrigation (0.2%) + chlorhexidine gel in pocket or laser irradiation	6 months	Baseline=83% 6 m = 31%	Unchanged (PI increased at 3 months and was unchanged at 6 months)	Baseline: 5.4±1.2 mm 6m: 4.6±1 mm (p<0.001)	Base line: 5.8±0.9 mm 6 m: 5.1±0.9 mm (p<0.001)	No significant change	Not reported	In spite of unchanged Plaque index, both therapies resulted in significant improvements of BOP, Pocket depth and Clinical attachment level
l implant		Not reported	120 mj/Pulse 10HZ	Stage 1: non-surgical ultrasonic scaling Stage 2: surgical exposure, granulation tissue curettage synthetic bone grafting	6 months	Total reduction. no BOP after 3 m	Not reported (The patient had maintained satisfactory oral hygiene.)	2-5 mm reduction 6 m after non-surgical therapy. Additional 0-2 m reduction 3 m ofter	Not-reported	Mild Recession occured 1-2 mm	Radiographic evidence of bone formation	

Laser and Peri-Implantitis

Table 1. Continued												
	Number of patients and implants	Implant type	Laser characteristic	Experimental procedures	Follow up	BOP	Plaque index	Pocket probing depth	Clinical attachment level	Gingival recession	Bone level	Comments
3	32 patients, 38 implants	Titanium Implants (Ankylos, Astra, Branemark, Carnlog, ITT, (International team for implantology) KSI (Nobel Replace, Tapered Screw Vent, Xive)	100 mj/ Pulse 10 HZ, 11.4 J/cm2	Surgical exposure, granulation tissue removed+ implantoplasty with diamond burs+Augmentation with natural bone mineral and collagen membrane ± plastic curets plus cotton pellets and sterile saline± Laser irradiation	6 months	47.8±35.5% Reduction (p<0.001)	Plaque index reduced at 6 months (p<0.01)	Reduction of 1.7±1.4 m (p<0.001)	Increase of 1.5±1.4 mm (p<0.001)	0.2±0.2mm recession (p<0.05), but no significant difference between groups.	Increased radioopacity in 14/15 implants	Short term improvements in clinical characteristics were observed
1 4	24 patients, 26 implants	Titanium Implants (Ankylos, Astra, Branemark, Camlog, ITI, KSI, Nobel Replace, Tapered Screw Vent, Xive) (21 rough surface, 5 smooth surface)	100 mj/ Pulse 10 HZ, 11.4 J/cm2	Surgical exposure, granulation tissue removed+ implantoplasty with diamond burs+ Augmentation with natural bone mineral and collagen membrane ± plastic curets plus cotton pellets and sterile saline± Laser irradiation	24 months	75.0±32.6% reduction (p≤0.001)	Plaque index reduced at 24 months, but not significant	1.7±1.2 mm reduction in 12 months (p<0.001) But not significant reduction in 24 months (1.1±2.2 mm)	1.3 \pm 1.2 mm reduction in 12 months ($p < 0.01$) But not significant reduction in 24 months (1.0 \pm 2.2 mm)	$0.4\pm0.2 \text{ mm}$ recession in 12 months 12 months p<0.01 But not significant recession in 24 months $(0.1\pm0.4 \text{ mm})$ mm)	Not reported (Reduced radioopacity in 4 implants with BOP>50% and/or suppuration)	Although significant improvements in Pocket probing depth, BOP and Clinical attachment level was observed in 12months, but only BOP remained significantly better in 24months.
N	42 patients, 100 implant	42 patients, 30 rough surface, 70 100 smooth surface implant	100 mj/Pulse 10 HZ 12.7J/cm2	Air abrasion or Laser irradiation	6 months	42.4% reduction, but not significant	Not reported	0.9±0.8mm reduction, but not significant	Not reported	Not reported	No significant change	Although there was some bactericidal effects in Laser group, but at 6 months, there was no bacterial reduction
	1 patient, 5 treated implants (case report)	Not reported	50 mJ, 20 Hz	Removal of granulation tissue by laser irradiation+ decontamination of implant surface by laser	3 years	Not reported	Not reported	Not reported	Not reported	Not reported	After 3 years, apparent bone regeneration was radiologically confirmed	Er: YAG can be a treatment alternative for peri- implantitis.

Laser and Peri-Implantitis

However these initial outcomes seemed not to be everlasting and found to be similar to conventional therapies, at longer periods of follow-up.

Er:YAG laser for treatment of Human periimplantitis (Table 1)

Nine studies used Er: YAG laser in treatment of periimplantitis, while four of them used it in combination with surgical exposure.(Table 1) Laser characteristics used in these studies were almost similar (100 mj, pulse mode, 10 Hz), except Badran et al. (120 mj, pulse mode, 10 Hz)²⁴ and Yamamoto et al. (50 mj, pulse mode, 20Hz)²⁵. Only four studies reported energy density which was either 11.4 j/cm2 or 12.7 j/cm2.26-29 Distance from which laser was irradiated or time of exposure was not mentioned in the studies. At the start of the interventions, all studies provided a healthy hygiene ranged from detailed instructions and demonstrations to professional supragingival cleaning, except Yamamoto study²⁵. But only seven out of eight studies tried to maintain that during the screening period and scheduled to reinforce hygiene maintenance.^{24, 27-32} Schwarz et al. in 2012 ²⁷ scheduled a recall appointment 12,18 and 24 months after the surgery and provided a professional supragingival implant/tooth cleaning. Implantoplasty of the exposed threatened areas of the implant was carried out using diamond burrs and a planished surface was achieved in Schwarz studies in 2011 and 2012.²⁷⁻²⁸

I would like to stress that plaque index (PI) was only reduced significantly in one study at 6 months followup.²⁸ Two studies had not significant reduction in PI ^{27,} ²⁹, one had unchanged PI ³², two higher than baseline ^{30,31} and three of them did not report it ²⁴⁻²⁶. Bleeding on probing (BOP) was brought down in all of the studies and was statistically significant in 5 of them. Even Badran et al.²⁴ reported a total elimination of BOP. All studies excluding Persson et al.26 and Yamamoto et al.25 reported a significant reduction in pocket probing depth (PPD). However, it has to be highlighted that Schwarz et al in 2012 ²⁷ reported that although PPD reduction was significant through first 12 months of observation, it was not significant any more as they assessed in month 24. Clinical Attachment Level (CAL), was decreased in three of the studies ^{27, 30, 32} and gained in two studies ^{28, 31.} It's interesting that Schwarz et al. studies in 2012 and 2006^{27, 31}, exhibited no significant difference at long term follow-up (24m and 12m respectively). Bone level was either not reported or showed signs of bone formation on radiographic examinations.

Certain degree of relapse can be observed among the studies with longer period of follow-up. It could be concluded that single dose of Er:YAG laser irradiation might have short term efficiency and multiple sessions of application might bring some clinical plus points. Also as mentioned earlier, plaque index as confounding factor was not efficiently controlled and this could adversely affect the treatment outcomes.

CO₂ laser for treatment of Human periimplantitis (Table 2)

The number of three studies found on topic of using CO_2 for treatment of peri-implantitis (Table 2), with only one of them being a clinical trial.³³ The others were a case series and a case study.^{34,35}Power of the laser was in a range of 2w to 4w, mostly around 2w. Continuous mode of application was used in two of them, while Romanos et al. study ³⁴ did not determine the mode. Duration of laser emission was 1 minute in Romanos et al. ³⁴ study and twelve episodes of 5 second laser exposures in Deppe et al. ³³ study. None of them noted the distance at which laser was applied. Deppe et al. ³³ provided comparison groups of air abrasion and bone augmentation. All of the studies, exposed defect area surgically and removed granulation tissue.

Except for Romanos et al. ³⁵, in which Plaque index was not reported, other studies showed reduced PI at the end of the monitoring, but they were not significant. Deppe et al. ³³ reported a significant decrease in PI after 4 months, but it was not maintained until the last follow-up and a slight increase was obvious. Out of three reviewed studies, only Deppe et al.³³ managed to maintain the oral hygiene, by reminding instructions and demonstrations during the study.

Romanos et al. studies in 2008 and 2009 34,35 found CO₂ laser to be an effective method for decontamination of implant surface, based on initial positive clinical outcomes they achieved. BOP and PPD was significantly reduced and an acceptable rate of bone fill was achieved in Romanos et al. 34 study, however width of keratinized mucosa did not increase significantly. They just reported a comparison of indices at baseline with final with a follow-up range of 27 ± 17.83 months, thus it's not clear that there was any change in pattern of healing or not. Romanos study in 2009 35 did not include any measured indices about soft tissue and assessment was only based on radiographic evidences of healing. Besides, no follow-up was reported.

Deppe et al.³³ found that despite noticeable improvement

	Comments	No clinical conclusion can be inferred.	Pocket Depth and Sulcus Bleeding index has reduced during long term observation. Decontamination of the implant surfaces with CO_2 in combination with augmentive techniques could be a good way of treating peri-implantitis.	Laser seems to accelerate treatment of periimplantitis, according to initial according to initial linical parameters, but long term observations revealed no significant difference.
	Com		Pocket Depth and Sulcus Bleeding ind has reduced during la term observation. Decontamination of implant surfaces with 2 in combina with augmentive techniques could be good way of treating peri-implant	Laser seems accelerate treat of periimplan according to in clinical paramet long term obserr revealed no sign difference
	Bone level	Good healing and new bone formation compared to base line	Complete fill with xenogenic grafting. 2/3 fill with autogenous grafting	40.8% bone fill (p>0.05)
	Gingival recession	Not- reported	Not- reported	reported
	Clinical attachment level	Not- reported	Slight, but not significant increase in width of keratinized mucosa.	3.2±0.52mm 3.6±0.47mm reduction gain (p value not (p>0.05) reported)
	Pocket probing depth	Not-reported	Plaque Mean index was reduction slightly from reduced, 6.0±2.03mm but not to to significant 2.48±0.63mm (P<0.01)	
	Plaque index	Not reported		Plaque index was reduced dramatically after 4m, but was slightly decreased in last followup compared to baseline.
	BOP	Not reported	Sulcus bleeding index reduced from 2.76±0.35 to 1.03 ±0.85 (P<0.01)	Sulcus bleeding index reduced dramatically after 4m, but was slightly decreased in last followup compared to baseline - Reduction of 42.4±52.2 % (p value not reported)
	Follow up	Not reported	27.1±17.83 months	1) 4 months 2) 5 to 59 after initial surgery
lces	Control procedure	(case study)	(case series) 27.1±17.83 months	Removal of granulation tissue, supra crestal cleaning with air- powder \pm bone augmentation
Table 2. Clinical human studies using CO_2 laser on oral implant surfaces	Experimental procedure (Procedures prior to and post irradiation)	Surgical exposure granulation tissue curetted	Surgical exposure+ granulation tissue curetted+ Xenogenic or autogenous grafting	Removal of granulation tissue, supra crestal cleaning with air-powder abrasive+Laser ± bone augmentation
CO ₂ laser on	Laser characteristic	2-4 w continous	2, 3, 4 W (Mean 2.84± 0.83w) For 1 min	1060 nm 2.5 w Continuous mode, 5 second exposure
udies using	Implant type	Not reported	Titanium implants (Ankylos, ITI, IMZ) 19 rough surface	Titanium implants (IMZ, Firalit, Branemark, IT1) 67 rough surface, 6 smooth surface
human stu	Number of patients and implants	1 patient (case study)	15 patients, 19 implants (case series)	32 73 implants
inical	Type of laser	CO2	CO ₂	CO ₂
able 2. Cl	Authors- year	1 Romanos CO2 1 patient et al. (case 2009 ³⁵ study)	Romanos and Nentwig 2008 ³⁴	Deppe et al. 2007 ³³
Ë			7	ς

- T	
=	
- IS	
ū	
5	
olan	
1	
ц	
. –	
12	
ora	
_	
- 2	
0	
ser on	
- e	
- ĕ	
0	
8	
- Õ	
\sim	
bſ	
u	
.12	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
_	
~ ~ ~	
.≌	
р	
a a	
St -	
2	
na	
8	
- 3	
Ē	
ିଗ	
0	
. =	
. H	
G	
$\cup$	
2	
e a	
Ĕ	

in PPD and CAL at fourth month observation, these result did not last until next follow-up. PI and BOP measures followed a meaningful pattern in accordance with latter findings, which decreased significantly, but increased at the next follow-up.

An overall conclusion on utilization of  $CO_2$  laser implies that unstable clinical outcomes concurrent with uncontrolled plaque index still holds this laser in a vague situation and further clinical trials are needed to achieve a certain verdict.

## Diode Laser for treatment of Human peri implantitis (Table 3)

Three studies were found, implementing Diode laser in a photodynamic therapy.(Table 3) Two were clinical trials ^{36, 38} and one was a case report.³⁷ Two studies used similar laser characteristics, including implementation of a 660 nm diode laser with 100mW power for 10 seconds.^{36, ³⁸ Mode of application was not mentioned in neither of them. One study used a 810 nm diode laser with 1.96 W power in continuous mode for 6 minutes.³⁷ Distance from which laser was applied was only mentioned in Roncati et al.³⁷study which was 1mm from the most apical portion of the pocket. During all three studies, hygiene instructions were given to the patients and reinforcement of oral hygiene was followed until 1 to 2 months.}

Schar et al.³⁶ and Bassetti et al.³⁸ used diode laser with exactly the same instructions, including laser irradiation in combination with Phenothiazine chloride (HELBO), 3minutes after hand curettage, air powder abrasion and irrigation with hydrogen peroxide. Adjunctive PDT (Photodynamic Therapy) was carried out one week later.

Plaque index was only reported in two studies, presented as modified plaque index (mPII).^{36, 38} mPII was statistically reduced at the end treatment follow ups (6 and 12 months). Schar et al.³⁶ reported a plaque free environment in the laser group at month 6.

BOP was significantly reduced at the end of follow ups in all three studies. Roncati et al.³⁷ and Schar et al.³⁶ reported some cases with no BOP positive sites.

PPD was reduced in all three studies. However, in Roncati et al.³⁷ study, 4mm PPD reduction was ascribed to formation of long junctional epithelium. Also, in Bassetti et al.³⁸ study, PPD reduction was not statistically significant any more at month 12. CAL was only reported in two studies ^{36, 38} which did not show any significant change in both studies. These two studies showed remarkable reduction in mucosal recession until month 6 and 9. However, this significant reduction was not

stable until month 12 in Bassetti et al.³⁸ study. (p>0.05)

There was no report on hard tissue assessments, except radiologic assessments of Roncati et al.³⁷ study, which showed only some improvement of the bone level.

Conclusively, diode laser seems to have some advantages in treating peri-implantitis. However, positive clinical outcomes appear to last for short periods of time. Also, hard tissue examinations are needed to prove efficacy of this treatment option in treating bony lesions.

## Discussion

Through the assiduous search that has been performed, a disharmony was found in studies regarding application of laser in treatment of peri-implantitis. Study designs had a significant diversity. Clinical parameters and indices were different in some cases, thus a clear and reliable inference could not be made. Some studies used a combination of laser therapy and other procedures. The relative effect of the laser application could therefore not be assessed.

Some studies suffered from small number of patients which might be relevant to low incidence of periimplantitis. Sample size calculation to estimate minimal number of patients and implants are needed to achieve a statistically significant positive therapeutic outcome, and were only reported in a few studies. Blinding of the examiner was only documented in a few studies. Smoking is identified as a confounding factor that adversely affects results of periodontal therapies ³⁹ and according to our survey, some studies did not even notice the smoking situation of the patients. However, some excluded smoker patients and some tried to distribute them in a random way.

The most important part that should be discussed is that a healthy periodontal environment is absolutely required after decontamination of implant surface to achieve desirable treatment outcomes. Failure in controlling plaque index in most of the studies can be a serious confounding factor that led to inconsistencies in the results. Enormous efforts are needed to motivate patients in order to maintain their oral hygiene and follow instructions. Regular maintenance sessions are to be scheduled.

Despite the inconsistencies in results of the previous studies, therapeutic potential of the lasers has to be noted. Positive treatment outcomes provide a foundation for future research to tune a delicate and efficient treatment protocol.

Table 3.	Clinical huma	n studies usir	ng Diode	laser on oral	Table 3. Clinical human studies using Diode laser on oral implant surfaces								
Authors- year	rs- Type of laser	Number of patients Implant and type implants	Implant type	nplant Laser type characteristic	Experimental procedures	Follow up	BOP	<b>Plaque</b> index	Pocket probing depth	Clinical attachment level	Gingival recession	Bone level	Comments
1         Schar et al.           al.         2013 ³⁶		Diode laser + 40 patients, Phenothiazine 40 implants chloride (HELBO)	ITI (SLA)	660 nm 100 mw 10 seconds (repeated 1 week later)	Mechanical debridement 6 with titanium curettes and months glycine-based powder air polishing and irrigation with 3% hydrogen peroxide ±Photodynamic treatment (Diode laser and HELBO) ± Local delivery of minocycline microspheres		63% reduction in BOP sites, at 6 months. 30% of the cases were free of inflammation.	Significant and complete reduction in modified plaque index was observed, at 6 month. (p<0.03)	0.36 mm reduction at 6 months (p≤0.005)	No significant change in attachment level. (p>0.05)	Significant reduced mucosal recession at month 6. (p<0.02)	Not reported	PhotoDynamic Therapy can be a treatment alternative in management of initial peri-implantitis
2 Roncati et al. 2013 ³⁷	ii Diode laser	1 patient, 1 implant	Titanium implant (Nobel Biocare)	Titanium 810-nm, 0.5 implant W, 1.96 J/cm2 (Nobel continuous Biocare) mode total time of 360 sec	<ul> <li>0.2% Chlorhexidine</li> <li>mouthwash+laser</li> <li>irradiation + titanium</li> <li>curettage + ultrasonic</li> <li>device with plastic tip+</li> <li>0.5% Chlorhexidine gel</li> <li>(all procedure repeated</li> <li>(all procedure repeated</li> </ul>	5 years	No BOP	Not reported	PPD reduced from 7mm to 3 mm.	Not reported	Not reported	Some improvement of the bone level	Laser can be an alternative modality in treating peri implantitis. However, reduction of the pocket seems to be related to re-epithelialization, with formation of a long junctional epithelial attachment.
3 Bassetti et al. 2013 ³⁸		Diode laser + 40 patients, Phenothiazine 40 implants chloride (HELBO)	ITI (SLA)	660 nm, 100mW, 10 seconds (repeated 1 week later)	Mechanical debridement 12 with titanium curettes and months glycine-based powder air polishing and irrigation with 3% hydrogen peroxide $\pm Photodynamic$ treatment (Diode lase and HELBO) $\pm$ Local delivery of minocycline microspheres	12 months	57% to 63 % reduction of BOP sites in laser groups after 12 months	Statistically significant reduction after 12 months.	PPD reduction at 9 months was significant ( $0.30$ mm) ( $p<0.04$ ), but at 12 months, it was not significant. ( $0.11$ mm) ( $p>0.2$ )	No statistically significant canges (P > 0.05) were observed over time	Significant reduced mucosal recession at month 6. (p<0.02), but not stable till month 12. (p>0.05)	Not reported	PhotoDynamic Therapy may represent an alternative approach in the non-surgical treatment of initial peri-implantitis

# Laser and Peri-Implantitis

# Conclusion

Lasers showed an initial positive outcome after a 6 months follow-up. Longer periods of follow-up revealed that initial results were somehow unstable and some degrees of relapse were reported. According to the review, Er:YAG seems to have more reliable documentation and application. Treatment outcome of  $CO_2$  and Diode laser needs to be more addressed. Future studies should have a long period of examination and follow-up for at least one year and plaque control policies should be strictly followed.

#### References

- 1. Berglundh T, Persson L, Klinge B. A systematic review of the incidence of biological and technical complications in implant dentistry reported in prospective longitudinal studies of at least 5 years. Journal of clinical periodontology. 2002;29(s3):197-212.
- Atieh MA, Alsabeeha NH, Faggion Jr CM, Duncan WJ. The frequency of peri-implant diseases: a systematic review and meta-analysis. Journal of periodontology. 2013;84(11):1586-98.
- Roos-Jansåker AM, Renvert S, Egelberg J. Treatment of peri-implant infections: a literature review. Journal of clinical periodontology. 2003;30(6):467-85.
- Lindhe J, Meyle J. Peri-implant diseases: Consensus Report of the Sixth European Workshop on Periodontology. Journal of clinical periodontology. 2008;35(s8):282-5.
- Froum SJ, Rosen PS. A proposed classification for periimplantitis. International Journal of Periodontics & Restorative Dentistry. 2012;32(5).
- Rosen P, Clem D, Cochran D. Peri-implant mucositis and peri-implantitis: a current understanding of their diagnoses and clinical implications. J Periodontol. 2013;84:436-43.
- Silverstein LH, Kurtzman D, Gamick JJ, Schuster GS, Moskowitiz ME. The microbiota of the peri-implant region in health and disease. Implant dentistry. 1994;3(3):170-5.
- Becker W, Becker BE, Newman MG, Nyman S. Clinical and microbiologic findings that may contribute to dental implant failure. International Journal of Oral & Maxillofacial Implants. 1990;5(1).
- Salmeron S, Rezende ML, Consolaro A, Sant'Ana AC, Damante CA, Greghi SL, et al. Laser therapy as an effective method for implant surface decontamination: A histomorphometric study in rats. Journal of periodontology. 2013;84(5):641-9.
- Esposito M, Grusovin MG, Kakisis I, Coulthard P, Worthington HV. Interventions for replacing missing teeth: treatment of perimplantitis. Cochrane Database Syst Rev. 2008;2.
- 11. Ntrouka VI, Slot DE, Louropoulou A, Van der Weijden F. The effect of chemotherapeutic agents on contaminated

titanium surfaces: a systematic review. Clinical oral implants research. 2011;22(7):681-90.

- Kotsovilis S, Karoussis IK, Trianti M, Fourmousis I. Therapy of peri-implantitis: a systematic review. Journal of clinical periodontology. 2008;35(7):621-9.
- Schwarz F, Jepsen S, Herten M, Sager M, Rothamel D, Becker J. Influence of different treatment approaches on non-submerged and submerged healing of ligature induced peri-implantitis lesions: an experimental study in dogs. Journal of clinical periodontology. 2006;33(8):584-95.
- 14. Persson LG, Mouhyi J, Berglundh T, Sennerby L, Lindhe J. Carbon dioxide laser and hydrogen peroxide conditioning in the treatment of periimplantitis: an experimental study in the dog. Clinical implant dentistry and related research. 2004;6(4):230-8.
- Schwarz F, Sculean A, Berakdar M, Georg T, Reich E, Becker J. Clinical evaluation of an Er: YAG laser combined with scaling and root planing for non-surgical periodontal treatment. Journal of clinical periodontology. 2003;30(1):26-34.
- 16. Persson GR, Salvi GE, Heitz-Mayfield LJ, Lang NP. Antimicrobial therapy using a local drug delivery system (Arestin®) in the treatment of peri-implantitis. I: microbiological outcomes. Clinical oral implants research. 2006;17(4):386-93.
- Schwarz F, Nuesry E, Bieling K, Herten M, Becker J. Influence of an erbium, chromium-doped yttrium, scandium, gallium, and garnet (Er, Cr: YSGG) laser on the reestablishment of the biocompatibility of contaminated titanium implant surfaces. Journal of periodontology. 2006;77(11):1820-7.
- Peters N, Tawse-Smith A, Leichter J, Tompkins G. Laser therapy: the future of peri-implantitis management. Braz J Periodontol. 2012;22(1):23-9.
- Gosau M, Hahnel S, Schwarz F, Gerlach T, Reichert TE, Bürgers R. Effect of six different peri-implantitis disinfection methods on in vivo human oral biofilm. Clinical oral implants research. 2010;21(8):866-72.
- 20. Matsuyama T, Aoki A, Oda S, Yoneyama T, Ishikawa I. Effects of the Er: YAG laser irradiation on titanium implant materials and contaminated implant abutment surfaces. Journal of clinical laser medicine & surgery. 2003;21(1):7-17.
- 21. Tosun E, Tasar F, Strauss R, Kıvanc DG, Ungor C. Comparative Evaluation of Antimicrobial Effects of Er: YAG, Diode, and CO< sub> 2</sub> Lasers on Titanium Discs: An Experimental Study. Journal of Oral and Maxillofacial Surgery. 2012;70(5):1064-9.
- 22. Stübinger S, Etter C, Miskiewicz M, Homann F, Saldamli B, Wieland M, et al. Surface alterations of polished and sandblasted and acid-etched titanium implants after Er: YAG, carbon dioxide, and diode laser irradiation. International Journal of Oral & Maxillofacial Implants. 2010;25(1).
- 23. Park J-H, Heo S-J, Koak J-Y, Kim S-K, Han C-H, Lee J-H. Effects of laser irradiation on machined and anodized titanium disks. International Journal of Oral & Maxillofacial Implants. 2012;27(2).
- 24. Badran Z, Bories C, Struillou X, Saffarzadeh A, Verner

C, Soueidan A. Er: YAG laser in the clinical management of severe peri-implantitis: a case report. Journal of Oral Implantology. 2011;37(sp1):212-7.

- 25. Yamamoto A, Tanabe T. Treatment of Peri-implantitis Around TiUnite-Surface Implants Using Er: YAG Laser Microexplosions. International Journal of Periodontics & Restorative Dentistry. 2013;33(1).
- 26. Persson GR, Roos-Jansåker A-M, Lindahl C, Renvert S. Microbiologic results after non-surgical erbium-doped: yttrium, aluminum, and garnet laser or air-abrasive treatment of peri-implantitis: a randomized clinical trial. Journal of periodontology. 2011;82(9):1267-78.
- 27. Schwarz F, John G, Mainusch S, Sahm N, Becker J. Combined surgical therapy of peri-implantitis evaluating two methods of surface debridement and decontamination. A two-year clinical follow up report. Journal of clinical periodontology. 2012;39(8):789-97.
- 28. Schwarz F, Sahm N, Iglhaut G, Becker J. Impact of the method of surface debridement and decontamination on the clinical outcome following combined surgical therapy of peri-implantitis: a randomized controlled clinical study. Journal of clinical periodontology. 2011;38(3):276-84.
- Renvert S, Lindahl C, Roos Jansåker AM, Persson GR. Treatment of peri-implantitis using an Er: YAG laser or an air-abrasive device: a randomized clinical trial. Journal of clinical periodontology. 2011;38(1):65-73.
- 30. Schwarz F, Bieling K, Nuesry E, Sculean A, Becker J. Clinical and histological healing pattern of peri-implantitis lesions following non-surgical treatment with an Er: YAG laser. Lasers in surgery and medicine. 2006;38(7):663-71.
- Schwarz F, Bieling K, Bonsmann M, Latz T, Becker J. Nonsurgical treatment of moderate and advanced periimplantitis lesions: a controlled clinical study. Clinical Oral Investigations. 2006;10(4):279-88.

- 32. Schwarz F, Sculean A, Rothamel D, Schwenzer K, Georg T, Becker J. Clinical evaluation of an Er: YAG laser for nonsurgical treatment of peri-implantitis: a pilot study. Clinical oral implants research. 2005;16(1):44-52.
- 33. Deppe H, Horch H-H, Neff A. Conventional Versus CO 2 Laser-Assisted Treatment of Pen-implant Defects with the Concomitant Use of Pure-Phase β-Tricalcium Phosphate: A 5-year Clinical Report. International Journal of Oral & Maxillofacial Implants. 2007;22(1).
- 34. Romanos GE, Nentwig GH. Regenerative Therapy of Deep Peri-implant Infrabony Defects After CO 2 Laser Implant Surface Decontamination. International Journal of Periodontics & Restorative Dentistry. 2008;28(3).
- 35. Romanos G, Ko H-H, Froum S, Tarnow D. The use of CO2 laser in the treatment of peri-implantitis. Photomedicine and laser surgery. 2009;27(3):381-6.
- 36. Schär D, Ramseier CA, Eick S, Arweiler NB, Sculean A, Salvi GE. Anti-infective therapy of peri-implantitis with adjunctive local drug delivery or photodynamic therapy: six-month outcomes of a prospective randomized clinical trial. Clinical oral implants research. 2013;24(1):104-10.
- Roncati M, Lucchese A, Carinci F. Non-surgical treatment of peri-implantitis with the adjunctive use of an 810-nm diode laser. Journal of Indian Society of Periodontology. 2013;17(6):812.
- 38. Bassetti M, Schär D, Wicki B, Eick S, Ramseier CA, Arweiler NB, et al. Anti-infective therapy of peri-implantitis with adjunctive local drug delivery or photodynamic therapy: 12-month outcomes of a randomized controlled clinical trial. Clinical oral implants research. 2013.
- Tonetti MS, Pini-Prato G, Cortellini P. Effect of cigarette smoking on periodontal healing following GTR in infrabony defects. A preliminary retrospective study. J Clin Periodontol. 1995 Mar;22(3):229-34.